ﻻ يوجد ملخص باللغة العربية
A t by n random matrix A is formed by sampling n independent random column vectors, each containing t components. The random Gram matrix of size n, G_n, contains the dot products between all pairs of column vectors in the randomly generated matrix A; that is, G_n = transpose(A) A. The matrix G_n has characteristic roots coinciding with the singular values of A. Furthermore, the sequences det(G_i) and per(G_i) (for i = 0, 1, ..., n) are factors that comprise the expected coefficients of the characteristic and permanental polynomials of G_n. We prove theorems that relate the generating functions and recursions for the traces of matrix powers, expected characteristic coefficients, expected determinants E(det(G_n)), and expected permanents E(per(G_n)) in terms of each other. Using the derived recursions, we exhibit the efficient computation of the expected determinant and expected permanent of a random Gram matrix G_n, formed according to any underlying distribution. These theoretical results may be used both to speed up numerical algorithms and to investigate the numerical properties of the expected characteristic and permanental coefficients of any matrix comprised of independently sampled columns.
We define a correlated random walk (CRW) induced from the time evolution matrix (the Grover matrix) of the Grover walk on a graph $G$, and present a formula for the characteristic polynomial of the transition probability matrix of this CRW by using a
We calculate the expectation value of an arbitrary product of characteristic polynomials of complex random matrices and their hermitian conjugates. Using the technique of orthogonal polynomials in the complex plane our result can be written in terms
We consider random polynomials whose coefficients are independent and uniform on {-1,1}. We prove that the probability that such a polynomial of degree n has a double root is o(n^{-2}) when n+1 is not divisible by 4 and asymptotic to $frac{8sqrt{3}}{
There is a digraph corresponding to every square matrix over $mathbb{C}$. We generate a recurrence relation using the Laplace expansion to calculate the characteristic, and permanent polynomials of a square matrix. Solving this recurrence relation, w
We calculate joint moments of the characteristic polynomial of a random unitary matrix from the circular unitary ensemble and its derivative in the case that the power in the moments is an odd positive integer. The calculations are carried out for fi