ﻻ يوجد ملخص باللغة العربية
The worst situation in computing the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation associated with an M-matrix occurs when the corresponding linearizing matrix has two very small eigenvalues, one with positive and one with negative real part. When both these eigenvalues are exactly zero, the problem is called critical or null recurrent. While in this case the problem is ill-conditioned and the convergence of the algorithms based on matrix iterations is slow, there exist some techniques to remove the singularity and transform the problem to a well-behaved one. Ill-conditioning and slow convergence appear also in close-to-critical problems, but when none of the eigenvalues is exactly zero the techniques used for the critical case cannot be applied. In this paper, we introduce a new method to accelerate the convergence properties of the iterations also in close-to-critical cases, by working on the invariant subspace associated with the problematic eigenvalues as a whole. We present a theoretical analysis and several numerical experiments which confirm the efficiency of the new method.
In this paper, we first propose a new parameterized definition of comparison matrix of a given complex matrix, which generalizes the definition proposed by cite {Axe1}. Based on this, we propose a new class of complex nonsymmetric algebraic Riccati e
In emph{Guo et al, arXiv:2005.08288}, we propose a decoupled form of the structure-preserving doubling algorithm (dSDA). The method decouples the original two to four coupled recursions, enabling it to solve large-scale algebraic Riccati equations an
For the nonsymmetric saddle point problems with nonsymmetric positive definite (1,1) parts, the modified generalized shift-splitting (MGSSP) preconditioner as well as the MGSSP iteration method are derived in this paper, which generalize the MSSP pre
We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of emph{doubling}: they construct the iterate $Q_k = X_{2^k}$ of another naturally-arising fixed-point iteration $(X_h)$ via a s
Differential algebraic Riccati equations are at the heart of many applications in control theory. They are time-depent, matrix-valued, and in particular nonlinear equations that require special methods for their solution. Low-rank methods have been u