ﻻ يوجد ملخص باللغة العربية
We investigate, numerically and experimentally, the effect of thermo-optical (TO) chaos on direct soliton generation (DSG) in microresonators. When the pump laser is scanned from blue to red and then stopped at a fixed wavelength, we find that the solitons generated sometimes remain (survive) and sometimes annihilate subsequent to the end of the scan. We refer to the possibility of these different outcomes arising under identical laser scan conditions as coexistence of soliton annihilation and survival. Numerical simulations that include the thermal dynamics show that the coexistence of soliton annihilation and survival is explained by TO chaos accompanying comb generation. The random fluctuations of the cavity resonance occurring under TO chaos are also found to trigger spontaneous soliton generation after the laser scan ends. The coexistence of soliton annihilation and survival as well as spontaneous soliton generation are observed experimentally in a silicon-nitride microresonator. The elucidation of the role of TO chaos provides important insights into the soliton generation dynamics in microresonators, which may eventually facilitate straightforward soliton generation in fully-integrated microresonators.
Optical frequency comb generation in microresonators has attracted significant attention over the past decade, as it offers the promising potential for chip-scale optical frequency synthesis, optical clocks and precise optical spectroscopy. However,
We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systemati
The formation of temporal dissipative solitons in optical microresonators enables compact, high repetition rate sources of ultra-short pulses as well as low noise, broadband optical frequency combs with smooth spectral envelopes. Here we study the in
Soliton crystals are periodic patterns of multi-spot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years
We demonstrate numerically novel mechanism providing generation of the flat-top solitonic pulses, platicons, in optical microresonators at normal GVD via negative thermal effects. We found that platicon excitation is possible if the ratio of the phot