ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermally Controlled Comb Generation and Soliton Modelocking in Microresonators

89   0   0.0 ( 0 )
 نشر من قبل Chaitanya Joshi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton modelocked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of modelocked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.



قيم البحث

اقرأ أيضاً

We demonstrate numerically novel mechanism providing generation of the flat-top solitonic pulses, platicons, in optical microresonators at normal GVD via negative thermal effects. We found that platicon excitation is possible if the ratio of the phot on lifetime to the thermal relaxation time is large enough. We show that there are two regimes of the platicon generation depending on the pump amplitude: the smooth one and the oscillatory one. Parameter ranges providing platicon excitation are found and analysed for different values of the thermal relaxation time, frequency-scan rate and GVD coefficient. Possibility of the turn-key generation regime is also shown.
We present a novel compact dual-comb source based on a monolithic optical crystalline MgF$_2$ multi-resonator stack. The coherent soliton combs generated in two microresonators of the stack with the repetition rate of 12.1 GHz and difference of 1.62 MHz provided after heterodyning a 300 MHz wide radio-frequency comb. Analogous system can be used for dual-comb spectroscopy, coherent LIDAR applications and massively parallel optical communications.
We investigate, numerically and experimentally, the effect of thermo-optical (TO) chaos on direct soliton generation (DSG) in microresonators. When the pump laser is scanned from blue to red and then stopped at a fixed wavelength, we find that the so litons generated sometimes remain (survive) and sometimes annihilate subsequent to the end of the scan. We refer to the possibility of these different outcomes arising under identical laser scan conditions as coexistence of soliton annihilation and survival. Numerical simulations that include the thermal dynamics show that the coexistence of soliton annihilation and survival is explained by TO chaos accompanying comb generation. The random fluctuations of the cavity resonance occurring under TO chaos are also found to trigger spontaneous soliton generation after the laser scan ends. The coexistence of soliton annihilation and survival as well as spontaneous soliton generation are observed experimentally in a silicon-nitride microresonator. The elucidation of the role of TO chaos provides important insights into the soliton generation dynamics in microresonators, which may eventually facilitate straightforward soliton generation in fully-integrated microresonators.
82 - Zhe Kang , Feng Li , Jinhui Yuan 2017
Kerr soliton frequency comb generation in monolithic microresonators recently attracted great interests as it enables chip-scale few-cycle pulse generation at microwave rates with smooth octave-spanning spectra for self-referencing. Such versatile pl atform finds significant applications in dual-comb spectroscopy, low-noise optical frequency synthesis, coherent communication systems, etc. However, it still remains challenging to straightforwardly and deterministically generate and sustain the single-soliton state in microresonators. In this paper, we propose and theoretically demonstrate the excitation of single-soliton Kerr frequency comb by seeding the continuous-wave driven nonlinear microcavity with a pulsed trigger. Unlike the mostly adopted frequency tuning scheme reported so far, we show that an energetic single shot pulse can trigger the single-soliton state deterministically without experiencing any unstable or chaotic states. Neither the pump frequency nor the cavity resonance is required to be tuned. The generated mode-locked single-soliton Kerr comb is robust and insensitive to perturbations. Even when the thermal effect induced by the absorption of the intracavity light is taken into account, the proposed single pulse trigger approach remains valid without requiring any thermal compensation means.
Development of chip-scale optical frequency comb with the coverage from ultra-violet (UV) to mid-infrared (MIR) wavelength is of great significance. To expand the comb spectrum into the challenging UV region, a material platform with high UV transpar ency is crucial. In this paper, crystalline aluminum nitride (AlN)-onsapphire film is demonstrated for efficient Kerr frequency comb generation. Near-infrared (NIR) comb with nearly octave-spanning coverage and low parametric threshold is achieved in continuous-wave pumped high-quality-factor AlN microring resonators. The competition between stimulated Raman scattering (SRS) and hyperparametric oscillation is investigated, along with broadband comb generation via Raman-assisted four-wave mixing (FWM). Thanks to its wide bandgap, excellent crystalline quality as well as intrinsic quadratic and cubic susceptibilities, AlN-on-sapphire platform should be appealing for integrated nonlinear optics from MIR to UV region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا