ترغب بنشر مسار تعليمي؟ اضغط هنا

Elliptic-type soliton combs in optical ring microresonators

203   0   0.0 ( 0 )
 نشر من قبل Alain Moise Dikande Pr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Soliton crystals are periodic patterns of multi-spot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic crystals, wave-guided wave systems and most recently optical ring microresonator devices. In this work an extensive analysis of characteristic features of soliton crystals is carried out, with emphasis on their one-to-one correspondance with Elliptic solitons. In this purpose we examine their formation, their stability and their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation. The stability analysis deals with internal modes of the system via a $2times2$-matrix Lame type eigenvalue problem, the spectrum of which is shown to possess a rich set of boundstates consisting of stable zero-fequency modes and unstable decaying as well as growing modes. Turning towards the dynamics of Elliptic solitons in ring-shaped fiber resonators with Kerr nonlinearity, first of all we propose a collective-coordinate approach, based on a Lagrangian formalism suitable for Elliptic-soliton solutions to the nonlinear Schrodinger equation with an arbitrary perturbation. Next we derive time evolutions of Elliptic-soliton parameters in the specific context of ring-shaped optical fiber resonators, where the optical field evolution is tought to be governed by the Lugiato-Lefever equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position, the phase of internal oscillations, the phase velocity and the energy is carried out and reveals a complex dynamics of the Elliptic soliton in ring-shaped optical microresonators.

قيم البحث

اقرأ أيضاً

We introduce the first principle model describing frequency comb generation in a WGM microresonator with the backscattering-induced coupling between the counter-propagating waves. {Elaborated model provides deep insight and accurate description of th e complex dynamics of nonlinear processes in such systems.} We analyse the backscattering impact on the splitting and reshaping of the nonlinear resonances, demonstrate backscattering-induced modulational instability in the normal dispersion regime and subsequent frequency comb generation. We present and discuss novel features of the soliton comb dynamics induced by the backward wave.
We investigate theoretically frequency comb generation in a bottle microresonator accounting for the azimuthal and axial degrees of freedom. We first identify a discrete set of the axial nonlinear modes of a bottle microresonator that appear as tilte d resonances bifurcating from the spectrum of linear axial modes. We then study azimuthal modulational instability of these modes and show that families of 2D soliton states localized both azimuthally and axially bifurcate from them at critical pump frequencies. Depending on detuning, 2D solitons can be either stable, or form persistent breathers, chaotic spatio-temporal patterns, or exhibit collapse-like evolution.
274 - Zhonghan Wu , Yiran Gao , Jian Dai 2020
Dual-coupled structure is typically used to actively change the local dispersion of microresonator through controllable avoided mode crossings (AMXs). In this paper, we investigate the reconfigurability of perfect soliton crystals (PSCs) based on dua l-coupled microresonators. The switching dynamics of PSCs are numerically simulated using perturbed Lugiato-Lefever equation (LLE). Nonlinear phenomena such as solitons rearranging, merging and bursting are observed in the switching process. Specially, for the first time, we have discovered an unexplored $PSC$ $region$ in the microcomb power-detuning phase plane. In $PSC$ $region$, the soliton number ($N$) of PSC state can be switched successively and bidirectionally in a defect-free fashion, verifying the feasibility and advantages of our scheme. The reconfigurability of PSCs would further liberate the application potential of microcombs in a wide range of fields, including frequency metrology, optical communications, and signal-processing systems.
On-chip manipulation of single resonance over broad background comb spectra of microring resonators is indispensable, ranging from tailoring laser emission, optical signal processing to non-classical light generation, yet challenging without scarifyi ng the quality factor or inducing additional dispersive effects. Here, we propose an experimentally feasible platform to realize on-chip selective depletion of single resonance in microring with decoupled dispersion and dissipation, which are usually entangled by Kramer-Kroning relation. Thanks to the existence of non-Hermitian singularity, unsplit but significantly increased dissipation of the selected resonance is achieved due to the simultaneous collapse of eigenvalues and eigenvectors, fitting elegantly the requirement of pure single-mode depletion. With delicate yet experimentally feasible parameters, we show explicit evidence of modulation instability as well as deterministic single soliton generation in microresonators induced by depletion in normal and anomalous dispersion regime, respectively. Our findings connect non-Hermitian singularities to wide range of applications associated with selective single mode manipulation in microwave photonics, quantum optics, ultrafast optics and beyond.
We predict the existence of a novel type of the flat-top dissipative solitonic pulses, platicons, in microresonators with normal group velocity dispersion (GVD). We propose methods to generate these platicons from cw pump. Their duration may be alter ed significantly by tuning the pump frequency. The transformation of a discrete energy spectrum of dark solitons of the Lugiato-Lefever equation into a quasicontinuous spectrum of platicons is demonstrated. Generation of similar structures is also possible with bi-harmonic, phase/amplitude modulated pump or via laser injection locking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا