ﻻ يوجد ملخص باللغة العربية
The Cox process is a stochastic process which generalises the Poisson process by letting the underlying intensity function itself be a stochastic process. In this paper we present a fast Bayesian inference scheme for the permanental process, a Cox process under which the square root of the intensity is a Gaussian process. In particular we exploit connections with reproducing kernel Hilbert spaces, to derive efficient approximate Bayesian inference algorithms based on the Laplace approximation to the predictive distribution and marginal likelihood. We obtain a simple algorithm which we apply to toy and real-world problems, obtaining orders of magnitude speed improvements over previous work.
Estimating the first-order intensity function in point pattern analysis is an important problem, and it has been approached so far from different perspectives: parametrically, semiparametrically or nonparametrically. Our approach is close to a semipa
Non-homogeneous Poisson processes are used in a wide range of scientific disciplines, ranging from the environmental sciences to the health sciences. Often, the central object of interest in a point process is the underlying intensity function. Here,
A nonparametric Bayes approach is proposed for the problem of estimating a sparse sequence based on Gaussian random variables. We adopt the popular two-group prior with one component being a point mass at zero, and the other component being a mixture
This paper presents objective priors for robust Bayesian estimation against outliers based on divergences. The minimum $gamma$-divergence estimator is well-known to work well estimation against heavy contamination. The robust Bayesian methods by usin
We consider exact algorithms for Bayesian inference with model selection priors (including spike-and-slab priors) in the sparse normal sequence model. Because the best existing exact algorithm becomes numerically unstable for sample sizes over n=500,