ﻻ يوجد ملخص باللغة العربية
A nonparametric Bayes approach is proposed for the problem of estimating a sparse sequence based on Gaussian random variables. We adopt the popular two-group prior with one component being a point mass at zero, and the other component being a mixture of Gaussian distributions. Although the Gaussian family has been shown to be suboptimal for this problem, we find that Gaussian mixtures, with a proper choice on the means and mixing weights, have the desired asymptotic behavior, e.g., the corresponding posterior concentrates on balls with the desired minimax rate. To achieve computation efficiency, we propose to obtain the posterior distribution using a deterministic variational algorithm. Empirical studies on several benchmark data sets demonstrate the superior performance of the proposed algorithm compared to other alternatives.
Mutual information is a well-known tool to measure the mutual dependence between variables. In this paper, a Bayesian nonparametric estimation of mutual information is established by means of the Dirichlet process and the $k$-nearest neighbor distanc
In spatial statistics, it is often assumed that the spatial field of interest is stationary and its covariance has a simple parametric form, but these assumptions are not appropriate in many applications. Given replicate observations of a Gaussian sp
While there is an increasing amount of literature about Bayesian time series analysis, only a few Bayesian nonparametric approaches to multivariate time series exist. Most methods rely on Whittles Likelihood, involving the second order structure of a
One of the most popular methodologies for estimating the average treatment effect at the threshold in a regression discontinuity design is local linear regression (LLR), which places larger weight on units closer to the threshold. We propose a Gaussi
We consider exact algorithms for Bayesian inference with model selection priors (including spike-and-slab priors) in the sparse normal sequence model. Because the best existing exact algorithm becomes numerically unstable for sample sizes over n=500,