ﻻ يوجد ملخص باللغة العربية
The incompressible three-dimensional ideal flows develop very thin pancake-like regions of increasing vorticity. These regions evolve with the scaling $omega_{max}(t)proptoell(t)^{-2/3}$ between the vorticity maximum and pancake thickness, and provide the leading contribution to the energy spectrum, where the gradual formation of the Kolmogorov interval $E_{k}propto k^{-5/3}$ is observed for some initial flows [Agafontsev et. al, Phys. Fluids 27, 085102 (2015)]. With the massive numerical simulations, in the present paper we study the influence of initial conditions on the processes of pancake formation and the Kolmogorov energy spectrum development.
Incompressible 3D Euler equations develop high vorticity in very thin pancake-like regions from generic large-scale initial conditions. In this work we propose an exact solution of the Euler equations for the asymptotic pancake evolution. This soluti
In fluid mechanics, a lot of authors have been reporting analytical solutions of Euler and Navier-Stokes equations. But there is an essential deficiency of non-stationary solutions indeed. In our presentation, we explore the case of non-stationary fl
An aspect of fluid dynamics lies in the search of possible statistical models for Navier-Stokes (NS) fluids described by classical solutions of the incompressible Navier-Stokes equations (INSE). This refers in particular to statistical models based o
The incompressible three-dimensional Euler equations develop very thin pancake-like regions of increasing vorticity. These regions evolve with the scaling $omega_{max}simell^{-2/3}$ between the vorticity maximum and the pancake thickness, as was obse
We investigate the spatio-temporal structure of the most likely configurations realising extremely high vorticity or strain in the stochastically forced 3D incompressible Navier-Stokes equations. Most likely configurations are computed by numerically