ترغب بنشر مسار تعليمي؟ اضغط هنا

On the initial conditions of the 1-point PDF for incompressible Navier-Stokes fluids

112   0   0.0 ( 0 )
 نشر من قبل Massimo Tessarotto
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An aspect of fluid dynamics lies in the search of possible statistical models for Navier-Stokes (NS) fluids described by classical solutions of the incompressible Navier-Stokes equations (INSE). This refers in particular to statistical models based on the so-called inverse kinetic theory (IKT) . This approach allows the description of fluid systems by means a suitable 1-point velocity probability density function (PDF) which determines, in terms of suitable moments, the complete set of fluid fields which define the fluid state. A fundamental related issue lies in the problem of the unique construction of the initial PDF. The goal of this paper is to propose a solution holding for NS fluids. Our claim is that the initial PDF can be uniquely determined by imposing a suitable set of physical realizability constraints.



قيم البحث

اقرأ أيضاً

This paper presents a low-communication-overhead parallel method for solving the 3D incompressible Navier-Stokes equations. A fully-explicit projection method with second-order space-time accuracy is adopted. Combined with fast Fourier transforms, th e parallel diagonal dominant (PDD) algorithm for the tridiagonal system is employed to solve the pressure Poisson equation, differing from its recent applications to compact scheme derivatives computation (Abide et al. 2017) and alternating-direction-implicit method (Moon et al. 2020). The number of all-to-all communications is decreased to only two, in a 2D pencil-like domain decomposition. The resulting MPI/OpenMP hybrid parallel code shows excellent strong scalability up to $10^4$ cores and small wall-clock time per timestep. Numerical simulations of turbulent channel flow at different friction Reynolds numbers ($Re_{tau}$ = 550, 1000, 2000) have been conducted and the statistics are in good agreement with the reference data. The proposed method allows massively simulation of wall turbulence at high Reynolds numbers as well as many other incompressible flows.
There have been several efforts to Physics-informed neural networks (PINNs) in the solution of the incompressible Navier-Stokes fluid. The loss function in PINNs is a weighted sum of multiple terms, including the mismatch in the observed velocity and pressure data, the boundary and initial constraints, as well as the residuals of the Navier-Stokes equations. In this paper, we observe that the weighted combination of competitive multiple loss functions plays a significant role in training PINNs effectively. We establish Gaussian probabilistic models to define the loss terms, where the noise collection describes the weight parameter for each loss term. We propose a self-adaptive loss function method, which automatically assigns the weights of losses by updating the noise parameters in each epoch based on the maximum likelihood estimation. Subsequently, we employ the self-adaptive loss balanced Physics-informed neural networks (lbPINNs) to solve the incompressible Navier-Stokes equations,hspace{-1pt} includinghspace{-1pt} two-dimensionalhspace{-1pt} steady Kovasznay flow, two-dimensional unsteady cylinder wake, and three-dimensional unsteady Beltrami flow. Our results suggest that the accuracy of PINNs for effectively simulating complex incompressible flows is improved by adaptively appropriate weights in the loss terms. The outstanding adaptability of lbPINNs is not irrelevant to the initialization choice of noise parameters, which illustrates the robustness. The proposed method can also be employed in other problems where PINNs apply besides fluid problems.
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a co mbinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as SGS models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-alpha model are compared to two previously employed regularizations, LANS-alpha and Leray-alpha (at Re ~ 3300, Taylor Re ~ 790) and to a DNS. We derive the Karman-Howarth equation for both the Clark-alpha and Leray-alpha models. We confirm one of two possible scalings resulting from this equation for Clark as well as its associated k^(-1) energy spectrum. At sub-filter scales, Clark-alpha possesses similar total dissipation and characteristic time to reach a statistical turbulent steady-state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark reproduces the energy spectrum and intermittency properties of the DNS. For the Leray model, increasing the filter width decreases the nonlinearity and the effective Re is substantially decreased. Even for the smallest value of alpha studied, Leray-alpha was inadequate as a SGS model. The LANS energy spectrum k^1, consistent with its so-called rigid bodies, precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in resolution. However, that this same feature reduces its intermittency compared to Clark-alpha (which shares a similar Karman-Howarth equation). Clark is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than alpha, whereas high-order intermittency properties for larger values of alpha are best reproduced by LANS-alpha.
The incompressible three-dimensional ideal flows develop very thin pancake-like regions of increasing vorticity. These regions evolve with the scaling $omega_{max}(t)proptoell(t)^{-2/3}$ between the vorticity maximum and pancake thickness, and provid e the leading contribution to the energy spectrum, where the gradual formation of the Kolmogorov interval $E_{k}propto k^{-5/3}$ is observed for some initial flows [Agafontsev et. al, Phys. Fluids 27, 085102 (2015)]. With the massive numerical simulations, in the present paper we study the influence of initial conditions on the processes of pancake formation and the Kolmogorov energy spectrum development.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا