ﻻ يوجد ملخص باللغة العربية
We compare two important bases of an irreducible representation of the symmetric group: the web basis and the Specht basis. The web basis has its roots in the Temperley-Lieb algebra and knot-theoretic considerations. The Specht basis is a classic algebraic and combinatorial construction of symmetric group representations which arises in this context through the geometry of varieties called Springer fibers. We describe a graph that encapsulates combinatorial relations between each of these bases, prove that there is a unique way (up to scaling) to map the Specht basis into the web representation, and use this to recover a result of Garsia-McLarnan that the transition matrix between the Specht and web bases is upper-triangular with ones along the diagonal. We then strengthen their result to prove vanishing of certain additional entries unless a nesting condition on webs is satisfied. In fact we conjecture that the entries of the transition matrix are nonnegative and are nonzero precisely when certain directed paths exist in the web graph.
Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in te
In a previous work (arXiv:0806.1503v2), we defined a family of subcomplexes of the $n$-dimensional half cube by removing the interiors of all half cube shaped faces of dimension at least $k$, and we proved that the homology of such a subcomplex is co
This paper considers the problem of matrix completion when the observed entries are noisy and contain outliers. It begins with introducing a new optimization criterion for which the recovered matrix is defined as its solution. This criterion uses the
Let $G$ be a real classical group of type $B$, $C$, $D$ (including the real metaplectic group). We consider a nilpotent adjoint orbit $check{mathcal O}$ of $check G$, the Langlands dual of $G$ (or the metaplectic dual of $G$ when $G$ is a real metapl
For quantum group of affine type, Lusztig gave an explicit construction of the affine canonical basis by simple perverse sheaves. In this paper, we construct a bar-invariant basis by using a PBW basis arising from representations of the corresponding