ﻻ يوجد ملخص باللغة العربية
For quantum group of affine type, Lusztig gave an explicit construction of the affine canonical basis by simple perverse sheaves. In this paper, we construct a bar-invariant basis by using a PBW basis arising from representations of the corresponding tame quiver. We prove that this bar-invariant basis coincides with Lusztigs canonical basis and obtain a concrete bijection between the elements in theses two bases. The index set of these bases is listed orderly by modules in preprojective, regular non-homogeneous, preinjective components and irreducible characters of symmetric groups. Our results are based on the work of Lin-Xiao-Zhang and closely related with the work of Beck-Nakajima. A crucial method in our construction is a generalization of that by Deng-Du-Xiao.
Let $textbf{U}^+$ be the positive part of the quantum group $textbf{U}$ associated with a generalized Cartan matrix. In the case of finite type, Lusztig constructed the canonical basis $textbf{B}$ of $textbf{U}^+$ via two approaches. The first one is
In our earlier work, we have proved a product formula for certain decomposition numbers of the cyclotomic v-Schur algebra associated to the Ariki-Koike algebra. It is conjectured by Yvonne that the decomposition numbers of this algebra can be describ
We construct a basis for a modified quantum group of finite type, extending the PBW bases of positive and negative halves of a quantum group. Generalizing Lusztigs classic results on PBW bases, we show that this basis is orthogonal with respect to it
In this article we study a conjecture of Geiss-Leclerc-Schr{o}er, which is an analogue of a classical conjecture of Lusztig in the Weyl group case. It concerns the relation between canonical basis and semi-canonical basis through the characteristic c
We determine the Hall algebra, in the sense of Toen, of the algebraic triangulated category generated by a spherical object.