ﻻ يوجد ملخص باللغة العربية
We present a computer simulation of entangled polymer solutions at equilibrium. The chains repel each other via a soft Gaussian potential, appropriate for semi-dilute solutions at the scale of a correlation blob. The key innovation to suppress chain crossings is to use a pseudo-continuous model of a backbone which effectively leaves no gaps between consecutive points on the chain, unlike the usual bead-and-spring model. Our algorithm is sufficiently fast to observe the entangled regime using a standard desktop computer. The simulated structural and mechanical correlations are in fair agreement with the expected predictions for a semi-dilute solution of entangled chains.
The Monte Carlo carbyne model is modified to investigate the glass transition of the semi-flexible entangled polymer chains. The stochastic bombardment between monomers are monitored by Metropolis algorithm with help of the consideration of hard pote
By means of Metropolis Monte Carlo simulations of a coarse-grained model for flexible polymers, we investigate how the integrated autocorrelation times of different energetic and structural quantities depend on the temperature. We show that, due to c
In this work, we use the finite differences in time domain (FDTD) numerical method to compute and assess the validity of Hopf solutions, or hopfions, for the electromagnetic field equations. In these solutions, field lines form closed loops character
Understanding the mechanics of detrimental convective instabilities in drying polymer solutions is crucial in many applications such as the production of film coatings. It is well known that solvent evaporation in polymer solutions can lead to Raylei
The effect of viscoelasticity on sprays produced from agricultural flat fan nozzles is investigated experimentally using dilute aqueous solutions of polyethylene oxide (PEO). Measurements of the droplet size distribution using laser diffraction revea