ترغب بنشر مسار تعليمي؟ اضغط هنا

What determines the drop size in sprays of polymer solutions?

69   0   0.0 ( 0 )
 نشر من قبل Antoine Gaillard
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of viscoelasticity on sprays produced from agricultural flat fan nozzles is investigated experimentally using dilute aqueous solutions of polyethylene oxide (PEO). Measurements of the droplet size distribution using laser diffraction reveal that polymer addition to water results in the formation of overall bigger droplets with a broader size distribution. The median droplet size $D_{50}$ is found to increase linearly with the extensional relaxation time of the liquid. The non-dimensional median droplet sizes of different polymer solutions, sprayed at different operating pressures from nozzles of different sizes, rescale on a single master curve when plotted against an empirical function of the Weber and Deborah numbers. Using high-speed photography of the spraying process, we show that the increase in droplet size with viscoelasticity can be partly attributed to an increase of the wavelength of the flapping motion responsible for the sheet breakup. We also show that droplet size distributions, rescaled by the average drop size, are well described by a compound gamma distribution with parameters $n$ and $m$ encoding for the ligament corrugation and the width of the ligament size distribution, respectively. These parameters are found to saturate to values $n=4$ and $m=4$ at high polymer concentrations.



قيم البحث

اقرأ أيضاً

Understanding the mechanics of detrimental convective instabilities in drying polymer solutions is crucial in many applications such as the production of film coatings. It is well known that solvent evaporation in polymer solutions can lead to Raylei gh-Benard or Marangoni-type instabilities. Here we reveal another mechanism, namely that evaporation can cause the interface to display Rayleigh-Taylor instabilities due to the build-up of a dense layer at the air-liquid interface. We study experimentally the onset time ($t_p$) of the instability as a function of the macroscopic properties of aqueous polymer solutions, which we tune by varying the polymer concentration ($c_0$), molecular weight and polymer type. In dilute solutions, $t_p$ shows two limiting behaviors depending on the polymer diffusivity. For high diffusivity polymers (low molecular weight), the pluming time scales as $c_0^{-2/3}$. This result agrees with previous studies on gravitational instabilities in miscible systems where diffusion stabilizes the system. On the other hand, in low diffusivity polymers the pluming time scales as $c_0^{-1}$. The stabilizing effect of an effective interfacial tension, similar to those in immiscible systems, explains this strong concentration dependence. Above a critical concentration, $hat{c}$, viscosity delays the growth of the instability, allowing time for diffusion to act as the dominant stabilizing mechanism. This results in $t_p$ scaling as $( u/c_0)^{2/3}$.
The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impingin g on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves which have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ~40% reduction in contact time.
Liquid drops and vibrations are ubiquitous in both everyday life and technology, and their combination can often result in fascinating physical phenomena opening up intriguing opportunities for practical applications in biology, medicine, chemistry a nd photonics. Here we study, theoretically and experimentally, the response of pancake-shaped liquid drops supported by a solid plate that vertically vibrates at a single, low acoustic range frequency. When the vibration amplitudes are small, the primary response of the drop is harmonic at the frequency of the vibration. However, as the amplitude increases, the half-frequency subharmonic Faraday waves are excited parametrically on the drop surface. We develop a simple hydrodynamic model of a one-dimensional liquid drop to analytically determine the amplitudes of the harmonic and the first superharmonic components of the linear response of the drop. In the nonlinear regime, our numerical analysis reveals an intriguing cascade of instabilities leading to the onset of subharmonic Faraday waves, their modulation instability and chaotic regimes with broadband power spectra. We show that the nonlinear response is highly sensitive to the ratio of the drop size and Faraday wavelength. The primary bifurcation of the harmonic waves is shown to be dominated by a period-doubling bifurcation, when the drop height is comparable with the width of the viscous boundary layer. Experimental results conducted using low-viscosity ethanol and high-viscocity canola oil drops vibrated at 70 Hz are in qualitative agreement with the predictions of our modelling.
Drop impact causes severe surface erosion, dictating many important natural, environmental and engineering processes and calling for tremendous prevention and preservation efforts. Nevertheless, despite extensive studies on various kinematic features of impacting drops over the last two decades, the dynamic process that leads to the drop-impact erosion is still far from clear. Here, we develop a method of high-speed stress microscopy, which measures the key dynamic properties of drop impact responsible for erosion, i.e., the shear stress and pressure distributions of impacting drops, with unprecedented spatiotemporal resolutions. Our experiments reveal the fast propagation of self-similar noncentral stress maxima underneath impacting drops and quantify the shear force on impacted substrates. Moreover, we examine the deformation of elastic substrates under impact and uncover impact-induced surface shock waves. Our study opens the door for quantitative measurements of the impact stress of liquid drops and sheds light on the mysterious origin of drop-impact erosion.
A charged droplet can be electrodynamically levitated in the air using a quadrupole trap by typically applying a sinusoidal electric field. When a charged drop is levitated it exhibits surface oscillations simultaneously building charge density due t o continuous evaporation and subsequently undergoes breakup due to Rayleigh instability. In this work, we examined large-amplitude surface oscillations of a sub-Rayleigh charged drop and its subsequent breakup, levitated by various applied signals such as sine, square and ramp waveform at various imposed frequencies, using high-speed imaging (recorded at 100-130 thousand Frames Per Second (fps)). It is observed that the drop surface oscillates in sphere-prolate-sphere-oblate (SPSO) mode and seldom in the sphere-prolate-sphere (SPS) mode depending on the intricate interplay of various forces due to charge(q), the intensity of applied field ($Lambda$) and shift of the droplet from the geometric center of the trap ($z_{shift}$). The Fast Fourier Transformation (FFT) analysis shows that the droplet oscillates with the forced frequency irrespective of the type of the applied waveform. While in the sinusoidal case, the nonlinearities are significant, in the square and ramp potentials, there is an admittance of all the harmonic frequencies of the applied potential. Interestingly, the breakup characteristics of a critically charged droplet is found to be unaffected by the type of the applied waveform. The experimental observations are validated with an analytical theory as well as with the Boundary Integral (BI) simulations in the potential flow limit and the results are found to be in a reasonable agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا