ﻻ يوجد ملخص باللغة العربية
In this paper, we experimentally demonstrate a real-time software defined multiple input multiple output (MIMO) visible light communication (VLC) system employing link adaptation of spatial multiplexing and spatial diversity. Real-time MIMO signal processing is implemented by using the Field Programmable Gate Array (FPGA) based Universal Software Radio Peripheral (USRP) devices. Software defined implantation of MIMO VLC can assist in enabling an adaptive and reconfigurable communication system without hardware changes. We measured the error vector magnitude (EVM), bit error rate (BER) and spectral efficiency performance for single carrier M-QAM MIMO VLC using spatial diversity and spatial multiplexing. Results show that spatial diversity MIMO VLC improves error performance at the cost of spectral efficiency that spatial multiplexing should enhance. We propose the adaptive MIMO solution that both modulation schema and MIMO schema are dynamically adapted to the changing channel conditions for enhancing the error performance and spectral efficiency. The average error-free spectral efficiency of adaptive 2x2 MIMO VLC achieved 12 b/s/Hz over 2 meters indoor dynamic transmission.
We experimentally demonstrate a software-defined 2x2 MIMO VLC system employing link adaptation of spatial multiplexing and diversity. The average error-free spectral efficiency of 12 b/s/Hz is achieved over 2 meters indoor transmission after an obstruction.
Recently, the spatial modulation (SM) technique has been proposed for visible light communication (VLC). This paper investigates the average symbol error rate (SER) for the VLC using adaptive spatial modulation (ASM). In the system, the analysis of t
Massive MIMO, a candidate for 5G technology, promises significant gains in wireless data rates and link reliability by using large numbers of antennas (more than 64) at the base transceiver station (BTS). Extra antennas help by focusing the transmiss
Multiple-input multiple-output (MIMO) techniques have recently demonstrated significant potentials in visible light communications (VLC), as they can overcome the modulation bandwidth limitation and provide substantial improvement in terms of spectra
In this paper, we propose a faster-than-Nyquist (FTN) non-orthogonal frequency-division multiplexing (NOFDM) scheme for visible light communications (VLC) where the multiplexing/demultiplexing employs the inverse fractional cosine transform (IFrCT)/F