ﻻ يوجد ملخص باللغة العربية
Multiple-input multiple-output (MIMO) techniques have recently demonstrated significant potentials in visible light communications (VLC), as they can overcome the modulation bandwidth limitation and provide substantial improvement in terms of spectral efficiency and link reliability. However, MIMO systems typically suffer from inter-channel interference, which causes severe degradation to the system performance. In this context, we propose a novel optical adaptive precoding (OAP) scheme for the downlink of MIMO VLC systems, which exploits the knowledge of transmitted symbols to enhance the effective signal-to-interference-plus-noise ratio. We also derive bit-error-rate expressions for the OAP under perfect and outdated channel state information (CSI). Our results demonstrate that the proposed scheme is more robust to both CSI error and channel correlation, compared to conventional channel inversion precoding.
We experimentally demonstrate a software-defined 2x2 MIMO VLC system employing link adaptation of spatial multiplexing and diversity. The average error-free spectral efficiency of 12 b/s/Hz is achieved over 2 meters indoor transmission after an obstruction.
Recently, the spatial modulation (SM) technique has been proposed for visible light communication (VLC). This paper investigates the average symbol error rate (SER) for the VLC using adaptive spatial modulation (ASM). In the system, the analysis of t
In this paper, we experimentally demonstrate a real-time software defined multiple input multiple output (MIMO) visible light communication (VLC) system employing link adaptation of spatial multiplexing and spatial diversity. Real-time MIMO signal pr
Visible Light Communication (VLC) technology using light emitting diodes (LEDs) has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multip
This paper presents an approach for visible light communication-based indoor positioning using compressed sensing. We consider a large number of light emitting diodes (LEDs) simultaneously transmitting their positional information and a user device e