ﻻ يوجد ملخص باللغة العربية
We study the flow equation of the O($N$) $varphi^4$ model in $d$ dimensions at the next-to-leading order (NLO) in the $1/N$ expansion. Using the Schwinger-Dyson equation, we derive 2-pt and 4-pt functions of flowed fields. As the first application of the NLO calculations, we study the running coupling defined from the connected 4-pt function of flowed fields in the $d+1$ dimensional theory. We show in particular that this running coupling has not only the UV fixed point but also an IR fixed point (Wilson-Fisher fixed point) in the 3 dimensional massless scalar theory. As the second application, we calculate the NLO correction to the induced metric in $d+1$ dimensions with $d=3$ in the massless limit. While the induced metric describes a 4-dimensional Euclidean Anti-de-Sitter (AdS) space at the leading order as shown in the previous paper, the NLO corrections make the space asymptotically AdS only in UV and IR limits. Remarkably, while the AdS radius does not receive a NLO correction in the UV limit, the AdS radius decreases at the NLO in the IR limit, which corresponds to the Wilson-Fisher fixed point in the original scalar model in 3 dimensions.
Noncompact SO(1,N) sigma-models are studied in terms of their large N expansion in a lattice formulation in dimensions d geq 2. Explicit results for the spin and current two-point functions as well as for the Binder cumulant are presented to next to
By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUS
Solutions of the Polchinski exact renormalization group equation in the scalar O(N) theory are studied. Families of regular solutions are found and their relation with fixed points of the theory is established. Special attention is devoted to the lim
The asymptotic behavior of Wilson loops in the large-size limit ($Lrightarrowinfty$) in confining gauge theories with area law is controlled by effective string theory (EST). The $L^{-2}$ term of the large-size expansion for the logarithm of Wilson l
We analyze the two-dimensional CP(N-1) sigma model defined on a finite space interval L, with various boundary conditions, in the large N limit. With the Dirichlet boundary condition at the both ends, we show that the system has a unique phase, which