ﻻ يوجد ملخص باللغة العربية
The asymptotic behavior of Wilson loops in the large-size limit ($Lrightarrowinfty$) in confining gauge theories with area law is controlled by effective string theory (EST). The $L^{-2}$ term of the large-size expansion for the logarithm of Wilson loop appears within EST as a two-loop correction. Ultraviolet divergences of this two-loop correction for polygonal contours can be renormalized using an analytical regularization constructed in terms of Schwarz-Christoffel mapping. In the case of triangular Wilson loops this method leads to a simple final expression for the $L^{-2}$ term.
In the framework of effective string theory (EST), the asymptotic behavior of a large Wilson loop in confining gauge theories can be expressed via Laplace determinant with Dirichlet boundary condition on the Wilson contour. For a general polygonal re
We propose and discuss a new approach to the analysis of the correlation functions which contain light-like Wilson lines or loops, the latter being cusped in addition. The objects of interest are therefore the light-like Wilson null-polygons, the sof
The previously developed renormalizable perturbative 1/N-expansion in higher dimensional scalar field theories is extended to gauge theories with fermions. It is based on the $1/N_f$-expansion and results in a logarithmically divergent perturbation t
We present two new families of Wilson loop operators in N= 6 supersymmetric Chern-Simons theory. The first one is defined for an arbitrary contour on the three dimensional space and it resembles the Zarembos construction in N=4 SYM. The second one in
We present calculations of certain limits of scheme-independent series expansions for the anomalous dimensions of gauge-invariant fermion bilinear operators and for the derivative of the beta function at an infrared fixed point in SU($N_c$) gauge the