ﻻ يوجد ملخص باللغة العربية
Noncompact SO(1,N) sigma-models are studied in terms of their large N expansion in a lattice formulation in dimensions d geq 2. Explicit results for the spin and current two-point functions as well as for the Binder cumulant are presented to next to leading order on a finite lattice. The dynamically generated gap is negative and serves as a coupling-dependent infrared regulator which vanishes in the limit of infinite lattice size. The cancellation of infrared divergences in invariant correlation functions in this limit is nontrivial and is in d=2 demonstrated by explicit computation for the above quantities. For the Binder cumulant the thermodynamic limit is finite and is given by 2/(N+1) in the order considered. Monte Carlo simulations suggest that the remainder is small or zero. The potential implications for ``criticality and ``triviality of the theories in the SO(1,N) invariant sector are discussed.
We consider a new large-N limit, in which the t Hooft coupling grows with N. We argue that a class of large-N equivalences, which is known to hold in the t Hooft limit, can be extended to this very strongly coupled limit. Hence this limit may lead to
We analyze the two-dimensional CP(N-1) sigma model defined on a finite space interval L, with various boundary conditions, in the large N limit. With the Dirichlet boundary condition at the both ends, we show that the system has a unique phase, which
We show that the half-maximal SU(2) gauged supergravity with topological mass term admits coupling of an arbitrary number of n vector multiplets. The chiral circle reduction of the ungauged theory in the dual 2-form formulation gives N=(1,0) supergra
We study the flow equation of the O($N$) $varphi^4$ model in $d$ dimensions at the next-to-leading order (NLO) in the $1/N$ expansion. Using the Schwinger-Dyson equation, we derive 2-pt and 4-pt functions of flowed fields. As the first application of
We compute the free energy in the presence of a chemical potential coupled to a conserved charge in the effective SU(N)xSU(N) scalar field theory to third order for asymmetric volumes in general d-dimensions, using dimensional regularization. We also