ترغب بنشر مسار تعليمي؟ اضغط هنا

From discrete to continuous monotone $C^*$-algebras via quantum central limit theorems

123   0   0.0 ( 0 )
 نشر من قبل Francesco Fidaleo
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that all finite joint distributions of creation and annihilation operators in Monotone and anti-Monotone Fock spaces can be realized as Quantum Central Limit of certain operators on a $C^*$-algebra, at least when the test functions are Riemann integrable. Namely, the approximation is given by weighted sequences of creators and annihilators in discrete monotone $C^*$-algebras, the weight being the above cited test functions. The construction is then generalized to processes by an invariance principle.

قيم البحث

اقرأ أيضاً

76 - Yanghui Liu , Samy Tindel 2017
In this article, we consider limit theorems for some weighted type random sums (or discrete rough integrals). We introduce a general transfer principle from limit theorems for unweighted sums to limit theorems for weighted sums via rough path techniq ues. As a by-product, we provide a natural explanation of the various new asymptotic behaviors in contrast with the classical unweighted random sum case. We apply our principle to derive some weighted type Breuer-Major theorems, which generalize previous results to random sums that do not have to be in a finite sum of chaos. In this context, a Breuer-Major type criterion in notion of Hermite rank is obtained. We also consider some applications to realized power variations and to Itos formulas in law. In the end, we study the asymptotic behavior of weighted quadratic variations for some multi-dimensional Gaussian processes.
83 - Stephane Attal 2012
Open Quantum Random Walks, as developed in cite{APSS}, are a quantum generalization of Markov chains on finite graphs or on lattices. These random walks are typically quantum in their behavior, step by step, but they seem to show up a rather classica l asymptotic behavior, as opposed to the quantum random walks usually considered in Quantum Information Theory (such as the well-known Hadamard random walk). Typically, in the case of Open Quantum Random Walks on lattices, their distribution seems to always converge to a Gaussian distribution or a mixture of Gaussian distributions. In the case of nearest neighbors homogeneous Open Quantum Random Walks on $ZZ^d$ we prove such a Central Limit Theorem, in the case where only one Gaussian distribution appears in the limit. Through the quantum trajectory point of view on quantum master equations, we transform the problem into studying a certain functional of a Markov chain on $ZZ^d$ times the Banach space of quantum states. The main difficulty is that we know nothing about the invariant measures of this Markov chain, even their existence. Surprisingly enough, we are able to produce a Central Limit Theorem with explicit drift and explicit covariance matrix. The interesting point which appears with our construction and result is that it applies actually to a wider setup: it provides a Central Limit Theorem for the sequence of recordings of the quantum trajectories associated to any completely positive map. This is what we show and develop as an application of our result. In a second step we are able to extend our Central Limit Theorem to the case of several asymptotic Gaussians, in the case where the operator coefficients of the quantum walk are block-diagonal in a common basis.
89 - Randolf Altmeyer 2019
The approximation of integral type functionals is studied for discrete observations of a continuous It^o semimartingale. Based on novel approximations in the Fourier domain, central limit theorems are proved for $L^2$-Sobolev functions with fractiona l smoothness. An explicit $L^2$-lower bound shows that already lower order quadrature rules, such as the trapezoidal rule and the classical Riemann estimator, are rate optimal, but only the trapezoidal rule is efficient, achieving the minimal asymptotic variance.
127 - Xiao Fang , Yuta Koike 2020
We obtain explicit error bounds for the $d$-dimensional normal approximation on hyperrectangles for a random vector that has a Stein kernel, or admits an exchangeable pair coupling, or is a non-linear statistic of independent random variables or a su m of $n$ locally dependent random vectors. We assume the approximating normal distribution has a non-singular covariance matrix. The error bounds vanish even when the dimension $d$ is much larger than the sample size $n$. We prove our main results using the approach of Gotze (1991) in Steins method, together with modifications of an estimate of Anderson, Hall and Titterington (1998) and a smoothing inequality of Bhattacharya and Rao (1976). For sums of $n$ independent and identically distributed isotropic random vectors having a log-concave density, we obtain an error bound that is optimal up to a $log n$ factor. We also discuss an application to multiple Wiener-It^{o} integrals.
A strengthened version of the central limit theorem for discrete random variables is established, relying only on information-theoretic tools and elementary arguments. It is shown that the relative entropy between the standardised sum of $n$ independ ent and identically distributed lattice random variables and an appropriately discretised Gaussian, vanishes as $ntoinfty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا