ﻻ يوجد ملخص باللغة العربية
Open Quantum Random Walks, as developed in cite{APSS}, are a quantum generalization of Markov chains on finite graphs or on lattices. These random walks are typically quantum in their behavior, step by step, but they seem to show up a rather classical asymptotic behavior, as opposed to the quantum random walks usually considered in Quantum Information Theory (such as the well-known Hadamard random walk). Typically, in the case of Open Quantum Random Walks on lattices, their distribution seems to always converge to a Gaussian distribution or a mixture of Gaussian distributions. In the case of nearest neighbors homogeneous Open Quantum Random Walks on $ZZ^d$ we prove such a Central Limit Theorem, in the case where only one Gaussian distribution appears in the limit. Through the quantum trajectory point of view on quantum master equations, we transform the problem into studying a certain functional of a Markov chain on $ZZ^d$ times the Banach space of quantum states. The main difficulty is that we know nothing about the invariant measures of this Markov chain, even their existence. Surprisingly enough, we are able to produce a Central Limit Theorem with explicit drift and explicit covariance matrix. The interesting point which appears with our construction and result is that it applies actually to a wider setup: it provides a Central Limit Theorem for the sequence of recordings of the quantum trajectories associated to any completely positive map. This is what we show and develop as an application of our result. In a second step we are able to extend our Central Limit Theorem to the case of several asymptotic Gaussians, in the case where the operator coefficients of the quantum walk are block-diagonal in a common basis.
We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, for
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the
A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogues of classical Markov chains. We explore
We study Random Walks in an i.i.d. Random Environment (RWRE) defined on $b$-regular trees. We prove a functional central limit theorem (FCLT) for transient processes, under a moment condition on the environment. We emphasize that we make no uniform e
We prove that all finite joint distributions of creation and annihilation operators in Monotone and anti-Monotone Fock spaces can be realized as Quantum Central Limit of certain operators on a $C^*$-algebra, at least when the test functions are Riema