ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulated Space Weathering of Fe- and Mg-rich Aqueously Altered Minerals Using Pulsed Laser Irradiation

57   0   0.0 ( 0 )
 نشر من قبل Heather Kaluna
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this work is to investigate contrasting spectral trends observed in carbonaceous chondrites by simulating space weathering effects on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces little reddening and darkening, but a pronounced reduction in band depths. Irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that npFe0 particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles results in the subsequent spectral bluing. The presence of npFe0 and possibly cronstedtite likely promotes the synthesis of these organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg- and Fe-rich aqueously altered minerals are dominant at different phases of the alteration process. Thus, the contrasting spectral slope evolution between the Fe- and Mg-rich samples in these experiments may indicate that space weathering trends of volatile-rich asteroids have a compositional dependency that could be used to determine the aqueous histories of asteroid parent bodies.

قيم البحث

اقرأ أيضاً

Olivine and pyroxene are important mineral end-members for studying the sur-face material compositions of mafic bodies. The profiles of visible and near-infraredspectra of olivine-orthopyroxene mixtures systematically varied with their compositionrat ios. In our experiments, we combine the RELAB spectral database with a new spec-tral data obtained from some assembled olivine-orthopyroxene mixtures. We found thatthe commonly-used band area ratio (BAR, Cloutis et al. 1986) does not work well onour newly obtained spectral data. To investigate this issue, an empirical procedure basedon fitted results by modified Gaussian model is proposed to analyze the spectral curves.Following the new empirical procedure, the end-member abundances can be estimatedwith a 15% accuracy with some prior mineral absorption features. In addition, the mix-ture samples configured in our experiments are also irradiated by pulsed lasers to simulateand investigate the space weathering effects. Spectral deconvolution results confirm thatlow-content olivine on celestial bodies are difficult to measure and estimate. Therefore,the olivine abundance of space weathered materials may be underestimated from remotesensing data. This study may be used to quantify the spectral relationship of olivine-orthopyroxene mixtures and further reveal their correlation between the spectra of ordi-nary chondrites and silicate asteroids.
Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope o f an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual rejuvenation of asteroid surfaces by impacts does not allow bodies with the ordinary chondrite composition to be masked among S asteroids. Spectroscopic analysis, using relatively invariant spectral parameters, such as band centers and band area ratios, can determine whether the surface of an S asteroid has chondritic composition or not. Differences in the environment of the main asteroid belt versus that at 1 AU, and the physical difference between the Moon and main belt asteroids (i.e., size) can account for the lack of lunar-type weathering on main belt asteroids.
Space weathering is a process that changes the surface of airless planetary bodies. Prime space weathering agents are solar wind irradiation and micrometeoroid bombardment. These processes alter planetary reflectance spectra and often modify their co mpositional diagnostic features. In this work we focused on simulating and comparing the spectral changes caused by solar wind irradiation and by micrometeoroid bombardment to gain a better understanding of these individual space weathering processes. We used olivine and pyroxene pellets as proxies for planetary materials. To simulate solar wind irradiation we used hydrogen, helium, and argon ions with energies from 5 to 40 keV and fluences of up to $10^{18}$ particles/cm$^2$. To simulate micrometeoroid bombardment we used individual femtosecond laser pulses. We analysed the corresponding evolution of different spectral parameters, which we determined by applying the Modified Gaussian Model, and we also conducted principal component analysis. The original mineralogy of the surface influences the spectral evolution more than the weathering agent, as seen from the diverse evolution of the spectral slope of olivine and pyroxene upon irradiation. The spectral slope changes seen in olivine are consistent with observations of A-type asteroids, while the moderate to no slope changes observed in pyroxene are consistent with asteroid (4) Vesta. We also observed some differences in the spectral effects induced by the two weathering agents. Ions simulating solar wind have a smaller influence on longer wavelengths of the spectra than laser irradiation simulating micrometeoroid impacts. This is most likely due to the different penetration depths of ions and laser pulses. Our results suggest that in some instances it might be possible to distinguish between the contributions of the two agents on a weathered surface.
187 - S. Marchi 2010
The majority of basaltic asteroids are found in the inner main belt, although a few have also been observed in the outer main belt and near-Earth space. These asteroids -referred to as V-types- have surface compositions that resemble that of the 530k m sized asteroid Vesta. Besides the compositional similarity, dynamical evidence also links many V-type asteroids to Vesta. Moreover, Vesta is one of the few asteroids to have been identified as source of specific classes of meteorites, the howardite, eucrite, diogenite achondrites (HEDs). Despite the general consensus on the outlined scenario, several questions remain unresolved. In particular, it is not clear if the observed spectral diversity among Vesta, V-types and HEDs is due to space weathering, as is thought to be the case for S-type asteroids. In this paper, SDSS photometry is used to address the question of whether the spectral diversity among candidate V-types and HEDs can be explained by space weathering. We show that visible spectral slopes of V-types are systematically redder with respect to HEDs, in a similar way to what is found for ordinary chondrite meteorites and S-types. On the assumption that space weathering is responsible for the slope mismatch, we estimated an upper limit for the reddening timescale of about 0.5Ga. Nevertheless, the observed slope mismatch between HEDs and V-types poses several puzzles to understanding its origin. The implication of our findings is also discussed in the light of Dawn mission to Vesta.
Molecular oxygen, nitrogen, and ozone have been detected in the Solar System. They are also expected to be present in ice-grain mantles within star-forming regions. Laboratory experiments that simulate energetic processing (ions, photons, and electro ns) of ices are essential for interpreting and directing future astronomical observations. We provide VUV photoabsorption spectroscopic data of energetically processed nitrogen- and oxygen-rich ices that will help to identify absorption bands and/or spectral slopes observed on icy objects in the Solar System and on ice-grain mantles of the interstellar medium. We present VUV photoabsorption spectra of frozen O2 and N2, a 1:1 mixture of both, and a new systematic set of pure and mixed nitrogen oxide ices. Spectra were obtained at 22 K before and after 1 keV electron bombardment of the ice sample. Ices were then annealed to higher temperatures to study their thermal evolution. In addition, Fourier-transform infrared spectroscopy was used as a secondary probe of molecular synthesis to better identify the physical and chemical processes at play. Our VUV data show that ozone and the azide radical (N3) are observed in our experiments after electron irradiation of pure O2 and N2 ices, respectively. Energetic processing of an O2:N2 = 1:1 ice mixture leads to the formation of ozone along with a series of nitrogen oxides. The electron irradiation of solid nitrogen oxides, pure and in mixtures, induces the formation of new species such as O2, N2 , and other nitrogen oxides not present in the initial ice. Results are discussed here in light of their relevance to various astrophysical environments. Finally, we show that VUV spectra of solid NO2 and water can reproduce the observational VUV profile of the cold surface of Enceladus, Dione, and Rhea, strongly suggesting the presence of nitrogen oxides on the surface of the icy Saturn moons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا