ﻻ يوجد ملخص باللغة العربية
Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope of an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual rejuvenation of asteroid surfaces by impacts does not allow bodies with the ordinary chondrite composition to be masked among S asteroids. Spectroscopic analysis, using relatively invariant spectral parameters, such as band centers and band area ratios, can determine whether the surface of an S asteroid has chondritic composition or not. Differences in the environment of the main asteroid belt versus that at 1 AU, and the physical difference between the Moon and main belt asteroids (i.e., size) can account for the lack of lunar-type weathering on main belt asteroids.
The majority of basaltic asteroids are found in the inner main belt, although a few have also been observed in the outer main belt and near-Earth space. These asteroids -referred to as V-types- have surface compositions that resemble that of the 530k
Phase reddening is an effect that produces an increase of the spectral slope and variations in the strength of the absorption bands as the phase angle increases. In order to understand its effect on spectroscopic observations of asteroids, we have an
Themis is an old and statistically robust asteroid family populating the outer main belt, and resulting from a catastrophic collision that took place 2.5$pm$1.0 Gyr ago. Within the old Themis family a young sub-family, Beagle, formed less than 10 Myr
Using data from the Sloan Digital Sky Survey Moving Object Catalog, we study color as a function of size for C-complex families in the Main Asteroid Belt to improve our understanding of space weathering of carbonaceous materials. We find two distinct
Large-area surveys operating at mid-infrared wavelengths have proven to be a valuable means of discovering and characterizing minor planets. Through the use of radiometric models, it is possible to derive physical properties such as diameters, albedo