ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass and width of the $Delta(1232)$ resonance using complex-mass renormalization

204   0   0.0 ( 0 )
 نشر من قبل Stefan Scherer
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the pole mass and the width of the $Delta(1232)$ resonance to third order in chiral effective field theory. In our calculation we choose the complex-mass renormalization scheme (CMS) and show that the CMS provides a consistent power-counting scheme. In terms of the pion-mass dependence, we compare the convergence behavior of the CMS with the small-scale expansion (SSE).



قيم البحث

اقرأ أيضاً

This snapshot of recent progress in hadron physics made in connection with QCDs Dyson-Schwinger equations includes: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a precis on the physics of in-hadron condensates; results on the hadron spectrum, including dressed-quark-core masses for the nucleon and Delta, their first radial excitations, and the parity-partners of these states; an illustration of the impact of DCSB on the electromagnetic pion form factor, thereby exemplifying how data can be used to chart the momentum-dependence of the dressed-quark mass function; and a prediction that F_1^{p,d}/F_1^{p,u} passes through zero at Q^2approx 5m_N^2 owing to the presence of nonpointlike scalar and axial-vector diquark correlations in the nucleon.
359 - M. Hilt , T. Bauer , S. Scherer 2017
We calculate the form factors of the electromagnetic nucleon-to-$Delta$-resonance transition to third chiral order in manifestly Lorentz-invariant chiral effective field theory. For the purpose of generating a systematic power counting, the complex-m ass scheme is applied in combination with the small-scale expansion. We fit the results to available empirical data.
We calculate the electromagnetic moments and radii of the Delta(1232) in the nonrelativistic quark model, including two-body exchange currents. We show that two-body exchange currents lead to nonvanishing Delta and N-->Delta transition quadrupole mom ents even if the wave functions have no D-state admixture. The usual explanation based on the single-quark transition model involves D-state admixtures but no exchange currents. We derive a parameter- free relation between the N-->Delta transition quadrupole moment and the neutron charge radius: Q(N-->Delta) = r^2(neutron)/sqrt(2). Furthermore, we calculate the M1 and E2 amplitudes for the process photon + N -->Delta. We find that the E2 amplitude receives sizeable contributions from exchange currents. These are more important than the ones which result from D-state admixtures due to tensor forces between quarks if a reasonable quark core radius of about 0.6 fm is used. We obtain a ratio of E2/M1=-3.5%.
Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energ y constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~cite{Alvarez-Ruso:2013fza}.
In the framework of effective field theory we show that, at two-loop order, the mass and width of the Delta resonance defined via the (relativistic) Breit-Wigner parametrization both depend on the choice of field variables. In contrast, the complex-v alued position of the pole of the propagator is independent of this choice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا