ترغب بنشر مسار تعليمي؟ اضغط هنا

Commissioning and First Results From Channeling Radiation At FAST

113   0   0.0 ( 0 )
 نشر من قبل Halavanau, Aliaksei
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-rays have widespread applications in science and industry, but developing a simple, compact, and high-quality X-ray source remains a challenge. Our collaboration has explored the possible use of channeling radiation driven by a 50 MeV low-emittance electron beam to produce narrowband hard X-rays with photon energy of 40 to 140 keV. Here we present the simulated X-ray spectra including the background bremsstrahlung contribution, and a description of the required optimization of the relevant electron-beam parameters necessary to maximize brilliance of the resulting X-ray beam. Results are presented from our test of this, carried out at the Fermilab Accelerator Science & Technology (FAST) facilitys 50-MeV low-energy electron injector. As a result of the beam parameters, made possible by the photo-injector based SRF linac, the average brilliance at FAST was expected to be about one order of magnitude higher than that in previous experiments.



قيم البحث

اقرأ أيضاً

234 - E.R. Harms , M. Awida , C. Baffes 2018
A new test stand dedicated to Superconducting Radiofrequency (SRF) cryomodule testing, CMTS1, has been commissioned and is now in operation at Fermilab. The first device to be cooled down and powered in this facility is the prototype 1.3 GHz cryomodu le assembled at Fermilab for LCLS-II. We describe the demonstrated capabilities of CMTS1, report on steps taken during commissioning, provide an overview of first test results, and survey future plans.
We report results of the beam commissioning and first operation of the 1.3 GHz superconducting RF electron linear accelerator at Fermilab Accelerator Science and Technology (FAST) facility. Construction of the linac was completed and the machine was commissioned with beam in 2017. The maximum total beam energy of about 300 MeV was achieved with the record energy gain of 250 MeV in the ILC-type SRF cryomodule. The photoinjector was tuned to produce trains of 200 pC bunches with a frequency of 3 MHz at a repetition rate of 1 Hz. This report describes the aspects of machine commissioning such as tuning of the SRF cryomodule and beam optics optimization. We also present highlights of an experimental program carried out parasitically during the two-month run, including studies of wake-fields, and advanced beam phase space manipulation.
IsoDAR is an experiment under development to search for sterile neutrinos using the isotope Decay-At-Rest (DAR) production mechanism, where protons impinging on $^9$Be create neutrons which capture on $^7$Li which then beta-decays producing $bar{ u}_ e$. As this will be an isotropic source of $bar{ u}_e$, the primary driver current must be large (10 mA cw) for IsoDAR to have sufficient statistics to be conclusive within 5 years of running. H$_2^+$ was chosen as primary ion to overcome some of the space-charge limitations during low energy beam transport and injection into a compact cyclotron. The H$_2^+$ will be stripped into protons before the target. At MIT, a multicusp ion source (MIST-1) was designed and built to produce a high intensity beam with a high H$_2^+$ fraction. MIST-1 is now operational at the Plasma Science and Fusion Center (PSFC) at MIT and under commissioning.
The Argon Dark Matter experiment is a ton-scale double phase argon Time Projection Chamber designed for direct Dark Matter searches. It combines the detection of scintillation light together with the ionisation charge in order to discriminate the bac kground (electron recoils) from the WIMP signals (nuclear recoils). After a successful operation on surface at CERN, the detector was recently installed in the underground Laboratorio Subterraneo de Canfranc, and the commissioning phase is ongoing. We describe the status of the installation and present first results from data collected underground with the detector filled with gas argon at room temperature.
This work describes first commissioning results from the Cornell Brookhaven Energy Recovery Test Accelerator Fractional Arc Test. These include the recommissioning of the Cornell photo-injector, the first full energy operation of the main linac with beam, as well as commissioning of the lowest energy matching beamline (splitter) and a partial section of the Fixed Field Alternating gradient (FFA) return loop featuring first production Halbach style permanent magnets. Achieving these tasks required characterization of the injection beam, calibration and phasing of the main linac cavities, demonstration of the required 36 MeV energy gain, and measurement of the splitter line horizontal dispersion and R56 at the nominal 42 MeV. In addition, a procedure for determining the BPM offsets, as well as the tune per cell in the FFA section via scanning the linac energy and inducing betatron oscillations around the periodic orbit in the fractional arc was developed and tested. A detailed comparison of these measurements to simulation is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا