ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

88   0   0.0 ( 0 )
 نشر من قبل Markus Kowalewski
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently developed circularly polarized X-ray light sources can probe ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism (TRCD) signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N and O) provide different local windows onto the parity breaking geometry change thus revealing enantiomer asymmetry.

قيم البحث

اقرأ أيضاً

Ongoing developments in ultrafast X-ray sources offer powerful new means of probing the com- plex non-adiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general elect ronic degeneracies termed conical in- tersections which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high level ab initio quantum dynamics simulations, we studied time-resolved X-ray absorption and photoelectron spectroscopy (TRXAS and TRXPS, respectively) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2 state. The TRXAS in particular is highly sensitive to all aspects of the ensuing dynamics. These X-ray spectroscopies provide a clear signature of the wavepacket dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast X-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.
The electronic and nuclear dynamics in methanol, following 156~nm photoexcitation, are investigated by combining a detailed analysis of time-resolved photoelectron spectroscopy experiments with electronic structure calculations. The photoexcitation p ump pulse is followed by a delayed 260~nm photoionization probe pulse, to produce photoelectrons that are analyzed by velocity map imaging. The yield of mass-resolved ions, measured with similar experimental conditions, are found to exhibit the same time-dependence as specific photoelectron spectral features. Energy-resolved signal onset and decay times are extracted from the measured photoelectron spectra to achieve high temporal resolution, beyond the 20~fs pump and probe pulse durations. When combined with {it ab initio} calculations of selected cuts through the excited state potential energy surfaces, this information allows the dynamics of the transient excited molecule, which exhibits multiple nuclear and electronic degrees of freedom, to be tracked on its intrinsic few-femtosecond timescale. Within 15~fs of photoexcitation, we observe nuclear motion on the initially bound photoexcited 2$^{1}$A$$ (S$_2$) electronic state, through a conical intersection with the 1$^{1}$A$$ (S$_3$) state, which reveals paths to photodissociation following C--O stretch and C--O--H angle opening.
Non-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows the stabilizat ion of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions. We report here on the ultrafast behavior of chiral DWs after optical pumping in perpendicularly magnetized asymmetric multilayers, probed using time-resolved circular dichroism in x-ray resonant magnetic scattering (CD-XRMS). We observe a picosecond transient reduction of the CD-XRMS, which is attributed to the spin current-induced coherent and incoherent torques within the continuously dependent spin texture of the DWs. We argue that a specific demagnetization of the inner structure of the DW induces a flow of hot spins from the interior of the neighboring magnetic domains. We identify this time-varying change of the DW textures shortly after the laser pulse as a distortion of the homochiral Neel shape toward a transient mixed Bloch-Neel-Bloch textures along a direction transverse to the DW. Our study highlights how time-resolved CD-XRMS can be a unique tool for studying the time evolution in other systems showing a non-collinear electric/magnetic ordering such as skyrmion lattices, conical/helical phases, as well as the recently observed antiskyrmion lattices, in metallic or insulating materials.
We use the terahertz (THz) emission spectroscopy to study femtosecond photocurrent dynamics in the prototypical 2D semiconductor, transition metal dichalcogenide MoSe$_2$. We identify several distinct mechanisms producing THz radiation in response to an ultrashort ($30,$fs) optical excitation in a bilayer (BL) and a multilayer (ML) sample. In the ML, the THz radiation is generated at a picosecond timescale by out-of-plane currents due to the drift of photoexcited charge carriers in the surface electric field. The BL emission is generated by an in-plane shift current. Finally, we observe oscillations at about $23,$THz in the emission from the BL sample. We attribute the oscillations to quantum beats between two excitonic states with energetic separation of $sim100,$meV.
We carry out X-ray absorption spectroscopy experiment at oxygen K-edge in croconic acid (C5H2O5) crystal as a prototype of ferroelectric organic molecular solid, whose electric polarization is generated by proton transfer. The experimental spectrum i s well reproduced by the electron-hole excitation theory simulations from configuration generated by ab initio molecular dynamics simulation. When inversion symmetry is broken in ferroelectric state, the hydrogen bonding environment on the two bonded molecules become inequivalent. Such a difference is sensitively probed by the bound excitation in the pre-edge, which are strongly localized on the excited molecules. Our analysis shows that a satellite peak in the pre-edge will emerge at higher excitation energy which serves as a clear signature of ferroelectricity in the material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا