ﻻ يوجد ملخص باللغة العربية
We carry out X-ray absorption spectroscopy experiment at oxygen K-edge in croconic acid (C5H2O5) crystal as a prototype of ferroelectric organic molecular solid, whose electric polarization is generated by proton transfer. The experimental spectrum is well reproduced by the electron-hole excitation theory simulations from configuration generated by ab initio molecular dynamics simulation. When inversion symmetry is broken in ferroelectric state, the hydrogen bonding environment on the two bonded molecules become inequivalent. Such a difference is sensitively probed by the bound excitation in the pre-edge, which are strongly localized on the excited molecules. Our analysis shows that a satellite peak in the pre-edge will emerge at higher excitation energy which serves as a clear signature of ferroelectricity in the material.
We present an x-ray absorption study of the dependence of the V oxidation state on the thickness of LaVO$_3$ (LVO) and capping LaAlO$_3$ (LAO) layers in the multilayer structure of LVO sandwiched between LAO. We found that the change of the valence o
X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method. While synchrotrons have large communities of XAS users, its use on X-Ray Free Electron Lasers (XFEL) facilities has been rather limited. At a first glance, the relatively n
We demonstrate a new method of x-ray absorption spectroscopy (XAS) that is bulk sensitive, like traditional fluorescence yield measurements, but is not affected by self-absorption or saturation effects. This measure of XAS is achieved by scanning the
The electronic structure of LiNiO$_2$, a promising Li-ion battery cathode material, has remained a challenge to understand due to its highly covalent yet correlated nature. Here we elucidate the electronic structure in LiNiO$_2$ and the related compo
We have studied the electronic structure of Li$_{1+x}$[Mn$_{0.5}$Ni$_{0.5}$]$_{1-x}$O$_2$ ($x$ = 0.00 and 0.05), one of the promising cathode materials for Li ion battery, by means of x-ray photoemission and absorption spectroscopy. The results show