ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast time-evolution of chiral Neel magnetic domain walls probed by circular dichroism in x-ray resonant magnetic scattering

79   0   0.0 ( 0 )
 نشر من قبل Nicolas Jaouen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows the stabilization of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions. We report here on the ultrafast behavior of chiral DWs after optical pumping in perpendicularly magnetized asymmetric multilayers, probed using time-resolved circular dichroism in x-ray resonant magnetic scattering (CD-XRMS). We observe a picosecond transient reduction of the CD-XRMS, which is attributed to the spin current-induced coherent and incoherent torques within the continuously dependent spin texture of the DWs. We argue that a specific demagnetization of the inner structure of the DW induces a flow of hot spins from the interior of the neighboring magnetic domains. We identify this time-varying change of the DW textures shortly after the laser pulse as a distortion of the homochiral Neel shape toward a transient mixed Bloch-Neel-Bloch textures along a direction transverse to the DW. Our study highlights how time-resolved CD-XRMS can be a unique tool for studying the time evolution in other systems showing a non-collinear electric/magnetic ordering such as skyrmion lattices, conical/helical phases, as well as the recently observed antiskyrmion lattices, in metallic or insulating materials.



قيم البحث

اقرأ أيضاً

Noncollinear chiral spin textures in ferromagnetic multilayers are at the forefront of recent research in nano-magnetism with the promise for fast and energy-efficient devices. The recently demonstrated possibilities to stabilize such chiral structur es in synthetic antiferromagnets (SAF) has raised interests as they are immune to dipolar field, hence favoring the stabilization of ultra small textures, improve mobility and avoid the transverse deflections of moving skyrmions limiting the efficiency in some foreseen applications. However, such systems with zero net magnetization are hence difficult to characterize by most of the standard techniques. Here, we report that the relevant parameters of a magnetic SAF texture, those being its period, its type (Neel or Bloch) and its chirality (clockwise or counterclockwise), can be directly determined using the circular dichroism in x-ray resonant scattering (CD-XRMS) at half integer multilayer Bragg peaks in reciprocal space. The analysis of the dependence in temperature down to 40K allows us moreover to address the question of the temperature stability of a spin spiral in a SAF sample and of the temperature scaling of the symmetric and antisymmetric exchange interactions.
Experiments of time-resolved x-ray magnetic circular dichroism (Tr-XMCD) and resonant x-ray scattering at a beamline BL07LSU in SPring-8 with a time-resolution of under 50 ps are presented. A micro-channel plate is utilized for the Tr-XMCD measuremen ts at nearly normal incidence both in the partial electron and total fluorescence yield (PEY and TFY) modes at the L2,3 absorption edges of the 3d transition-metals in the soft x-ray region. The ultrafast photo-induced demagnetization within 50 ps is observed on the dynamics of a magnetic material of FePt thin film, having a distinct threshold of the photon density. The spectrum in the PEY mode is less-distorted both at the L2,3 edges compared with that in the TFY mode and has the potential to apply the sum rule analysis for XMCD spectra in pump-probed experiments.
170 - S. Valencia , A. Gaupp , W. Gudat 2007
Surface magnetic properties of perovskite manganites have been a recurrent topic during last years since they play a major role in the implementation of magnetoelectronic devices. Magneto-optical techniques, such as X-ray magnetic circular dichroism, turn out to be a very efficient tool to study surface magnetism due to their sensitivity to magnetic and chemical variations across the sample depth. Nevertheless, the application of the sum rules for the determination of the spin magnetic moment might lead to uncertainties as large as 40% in case of Mn ions. To overcome this problem we present an alternative approach consisting of using X-ray magnetic circular dichroism in reflection geometry. Fit of the data by using a computer code based in a 4X4 matrix formalism leads to realistic results. In particular, we show that surface and interface roughness are of major relevance for a proper description of the experimental data and a correct interpretation of the results. By using such an approach we demonstrate the presence of a narrow surface region with strongly depressed magnetic properties in La2/3Ca1/3MnO3 thin films.
169 - Jin Lan , Weichao Yu , Jiang Xiao 2020
Spin wave, the collective excitation of magnetic order, is one of the fundamental angular momentum carriers in magnetic systems. Understanding the spin wave propagation in magnetic textures lies in the heart of developing pure magnetic information pr ocessing schemes. Here we show that the spin wave propagation across a chiral domain wall follows simple geometric trajectories, similar to the geometric optics. And the geometric behaviors are qualitatively different in normally magnetized film and tangentially magnetized film. We identify the lateral shift, refraction, and total reflection of spin wave across a ferromagnetic domain wall. Moreover, these geometric scattering phenomena become polarization-dependent in antiferromagnets, indicating the emergence of spin wave birefringence inside antiferromagnetic domain wall.
The chirality-dependent magnetoelectric properties of Neel-type domain walls in iron garnet films is observed. The electrically driven magnetic domain wall motion changes the direction to the opposite with the reversal of electric polarity of the pro be and with the chirality switching of the domain wall from clockwise to counterclockwise. This proves that the origin of the electric field induced micromagnetic structure transformation is inhomogeneous magnetoelectric interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا