ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin liquid mediated RKKY interaction

70   0   0.0 ( 0 )
 نشر من قبل Henry Legg
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an RKKY-type interaction that is mediated by a spin liquid. If a spin liquid ground state exists such an interaction could leave a fingerprint by ordering underlying localized moments such as nuclear spins. This interaction has a unique phenomenology that is distinct from the RKKY interaction found in fermionic systems; most notably the lack of a Fermi surface and absence of the requirement for itinerant electrons, since most spin liquids are insulators. As a working example we investigate the two-dimensional spin-1/2 kagome antiferromagnet (KAFM), although the treatment remains general and can be extended to other spin liquids and dimensions. We find that several different nuclear spin orderings minimize the RKKY-type energy induced by the KAFM but are unstable due to a zero-energy flat magnon band. Despite this we show that a small magnetic field is able to gap out this magnon spectrum for some of the orderings resulting in an intricate nuclear magnetism.



قيم البحث

اقرأ أيضاً

Carrier-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction plays an important role in itinerant magnetism. There have been intense interest on its general trend on bipartite lattice with particle-hole symmetry. In particular, recently fabricat ed graphene is well described by the honeycomb lattice within tight-binding approximation. We use SUSY quantum mechanics to study the RKKY interaction on bipartite lattices. The SUSY structure naturally differentiate the zero modes and those paired states at finite energies. The significant role of zero modes is largely ignored in previous literature because their measure is often zero in the thermodynamic limit. Employing both real-time and imaginary-time formalism, we arrive at the same conclusion: The RKKY interaction for impurity spins on different sublattices is always antiferromagnetic. However, for impurity spins on the same sublattice, the carrier-mediated RKKY interaction is not always ferromagnetic. Only in the absence of zero modes, the sign rule on the bipartite lattice holds true. Our finding highlight the importance of the zero modes in bipartite lattices. Their significance needs further investigation and may lead to important advances in carrier-mediated magnetism.
We theoretically explore the RKKY interaction mediated by spin-3/2 quasiparticles in half-Heusler topological semimetals in quasi-two-dimensional geometries. We find that while the Kohn-Luttinger terms gives rise to generalized Heisenberg coupling of the form ${cal H}_{rm RKKY} propto {sigma}_{1,i} {cal I}_{ij} {sigma}_{2,j}$ with a symmetric matrix ${cal I}_{ij}$, addition of small antisymmetric linear spin-orbit coupling term leads to Dzyaloshinskii-Moriya (DM) coupling with an antisymmetric matrix ${cal I}_{ij}$. We demonstrate that besides the oscillatory dependence on the distance, all coupling strengths strongly depend on the relative orientation of the two impurities with respect to the lattice. This yields a strongly anisotropic behavior for ${cal I}_{ij}$ such that by only rotating one impurity around another at a constant distance, we can see further oscillations of the RKKY couplings. This unprecedented effect is unique to our system which combines spin-orbit coupling with strongly anisotropic Fermi surfaces. We further find that all of the RKKY terms have two common features: a tetragonal warping in their map of spatial variations, and a complex beating pattern. Intriguingly, all these features survive in all dopings and we see them in both electron- and hole-doped cases. In addition, due to the lower dimensionality combined with the effects of different spin-orbit couplings, we see that only one symmetric off-diagonal term, ${cal I}_{xy}$ and two DM components ${cal I}_{xz}$ and ${cal I}_{yz}$ are nonvanishing, while the remaining three off-diagonal components are identically zero. This manifests another drastic difference of RKKY interaction in half-Heusler topological semimetals compared to the electronic systems with spin-1/2 effective description.
We theoretically investigate the features of Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction between two magnetic impurities, mediated by the interfacial bound states inside a domain wall (DW). The latter separates the two regions with oppo sitely signed inversion symmetry broken terms in graphene and Weyl semimetal. The DW is modelled by a smooth quantum well which hosts a number of discrete bound states including a pair of gapless, metallic zero-energy modes with opposite chiralities. We find clear signatures of these interfacial chiral bound states in spin response (RKKY exchange interaction) which is robust to the deformation of the quantum well.
91 - Jinlyu Cao , H.A. Fertig , 2019
We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RK KY interactions are enhanced by the lowest Landau level, which is shown to form electron states binding with the spin impurities and add a strong non-perturbative contribution to pairwise impurity spin interactions when their separation $R$ no more than the magnetic length. Beyond this interactions are found to fall off as $1/R^3$ due to perturbative effects of the negative energy Landau levels. Based on these results, we develop simple mean-field theories for both systems, taking into account the fact that typically the density of states in the lowest Landau level is much smaller than the density of spin impurities. For the strain field case, we find that the system is formally ferrimagnetic, but with very small net moment due to the relatively low density of impurities binding electrons. The transition temperature is nevertheless enhanced by them. For real fields, the system forms a canted antiferromagnet if the field is not so strong as to pin the impurity spins along the field. The possibility that the system in this latter case supports a Kosterlitz-Thouless transition is discussed.
The dynamics of itinerant electrons in topological insulator (TI) thin films is investigated using a multi-band decomposition approach. We show that the electron trajectory in the 2D film is anisotropic and confined within a characteristic region. Re markably, the confinement and anisotropy of the electron trajectory are associated with the topological phase transition of the TI system, which can be controlled by tuning the film thickness and/or applying an in-plane magnetic field. Moreover, persistent electron wavepacket oscillation can be achieved in the TI thin film system at the phase transition point, which may assist in the experimental detection of the jitter motion (Zitterbewegung). The implications of the microscopic picture of electron motion in explaining other transport-related effects, e.g., electron-mediated RKKY coupling in the TI thin film system, are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا