ﻻ يوجد ملخص باللغة العربية
Carrier-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction plays an important role in itinerant magnetism. There have been intense interest on its general trend on bipartite lattice with particle-hole symmetry. In particular, recently fabricated graphene is well described by the honeycomb lattice within tight-binding approximation. We use SUSY quantum mechanics to study the RKKY interaction on bipartite lattices. The SUSY structure naturally differentiate the zero modes and those paired states at finite energies. The significant role of zero modes is largely ignored in previous literature because their measure is often zero in the thermodynamic limit. Employing both real-time and imaginary-time formalism, we arrive at the same conclusion: The RKKY interaction for impurity spins on different sublattices is always antiferromagnetic. However, for impurity spins on the same sublattice, the carrier-mediated RKKY interaction is not always ferromagnetic. Only in the absence of zero modes, the sign rule on the bipartite lattice holds true. Our finding highlight the importance of the zero modes in bipartite lattices. Their significance needs further investigation and may lead to important advances in carrier-mediated magnetism.
Undoped GaAs/AlGaAs heterostructures have been used to fabricate quantum wires in which the average impurity separation is greater than the device size. We compare the behavior of the Zero-Bias Anomaly against predictions from Kondo and spin polariza
We propose an RKKY-type interaction that is mediated by a spin liquid. If a spin liquid ground state exists such an interaction could leave a fingerprint by ordering underlying localized moments such as nuclear spins. This interaction has a unique ph
Topological flat bands, such as the band in twisted bilayer graphene, are becoming a promising platform to study topics such as correlation physics, superconductivity, and transport. In this work, we introduce a generic approach to construct two-dime
We theoretically investigate the features of Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction between two magnetic impurities, mediated by the interfacial bound states inside a domain wall (DW). The latter separates the two regions with oppo
We compute the tunneling density of states of doped multi-wall nanotubes including disorder and electron-electron interactions. A non-conventional Coulomb blockade reflecting nonperturbative Altshuler-Aronov-Lee power-law zero-bias anomalies is found