ﻻ يوجد ملخص باللغة العربية
Theories with generalised conformal structure contain a dimensionful parameter, which appears as an overall multiplicative factor in the action. Examples of such theories are gauge theories coupled to massless scalars and fermions with Yukawa interactions and quartic couplings for the scalars in spacetime dimensions other than 4. Many properties of such theories are similar to that of conformal field theories (CFT), and in particular their 2-point functions take the same form as in CFT but with the normalisation constant now replaced by a function of the effective dimensionless coupling $g$ constructed from the dimensionful parameter and the distance separating the two operators. Such theories appear in holographic dualities involving non-conformal branes and this behaviour of the correlators has already been observed at strong coupling. Here we present a perturbative computation of the two-point function of the energy-momentum tensor to two loops in dimensions $d= 3, 5$, confirming the expected structure and determining the corresponding functions of $g$ to this order, including the effects of renormalisation. We also discuss the d=4 case for comparison. The results for $d=3$ are relevant for holographic cosmology, and in this case we also study the effect of a $Phi^6$ coupling, which while marginal in the usual sense it is irrelevant from the perspective of the generalised conformal structure. Indeed, the effect of such coupling in the 2-point function is washed out in the IR but it modifies the UV.
The probably most fundamental information about a particle is contained in the matrix elements of its energy momentum tensor (EMT) which are accessible from hard-exclusive reactions via generalized parton distribution functions. The spin decompositio
In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell states in four-dimensional unitary, local, and Poincare covariant quantum field theories. We demonstrate that these matrix elements can be parametrise
The structure of the matrix elements of the energy-momentum tensor play an important role in determining the properties of the form factors $A(q^{2})$, $B(q^{2})$ and $C(q^{2})$ which appear in the Lorentz covariant decomposition of the matrix elemen
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even tho
In conformal field theory in Minkowski momentum space, the 3-point correlation functions of local operators are completely fixed by symmetry. Using Ward identities together with the existence of a Lorentzian operator product expansion (OPE), we show