ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of Azimuthal-angle Observables under Higher Order Corrections in Inclusive Three-jet Production

69   0   0.0 ( 0 )
 نشر من قبل Grigorios Chachamis
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, a new family of observables consisting of azimuthal-angle generalised ratios was proposed in a kinematical setup that resembles the usual Mueller-Navelet jets but with an additional tagged jet in the central region of rapidity. Non-tagged minijet activity between the three jets can affect significantly the azimuthal angle orientation of the jets and is accounted for by the introduction of two BFKL gluon Green functions. Here, we calculate the, presumably, most relevant higher order corrections to the observables by now convoluting the three leading-order jet vertices with two gluon Green functions at next-to-leading logarithmic approximation. The corrections appear to be mostly moderate giving us confidence that the recently proposed observables are actually an excellent way to probe the BFKL dynamics at the LHC. Furthermore, we allow for the jets to take values in different rapidity bins in various configurations such that a comparison between our predictions and the experimental data is a straightforward task.

قيم البحث

اقرأ أيضاً

We discuss the impact of corrections beyond the leading-logarithmic accuracy on some recently proposed LHC observables that are based on azimuthal-angle ratios in a kinematical setup that is an extension to the usual one for Mueller-Navelet jets, aft er requiring an extra tagged jet in central regions of rapidity. The corrections tend to be mild which suggests that these observables are an excellent way to probe the onset of BFKL effects at hadronic colliders.
We propose the study of new observables in LHC inclusive events with three tagged jets, one in the forward direction, one in the backward direction and both well-separated in rapidity from the each other (Mueller-Navelet jets), together with a third jet tagged in central regions of rapidity. Since non-tagged associated mini-jet multiplicity is allowed, we argue that projecting the cross sections on azimuthal-angle components can provide several distinct tests of the BFKL dynamics. Realistic LHC kinematical cuts are introduced.
We compute the inclusive jet spectrum in the presence of a dense QCD medium by going beyond the single parton energy loss approximation. We show that higher-order corrections are important yielding large logarithmic contributions that must be resumme d to all orders. This reflects the fact that jet quenching is sensitive to fluctuations of the jet substructure.
We calculate higher-order corrections to the quenching factor of heavy-quark jets due to hard, in-medium splittings in the framework of the BDMPS-Z formalism. These corrections turn out to be sensitive to a single mass-scale $m_ast = (hat q L)^{1/2}$ , where $hat q$ is the medium transport coefficient and $L$ the path length, and allow to draw a distinction between the way light, with $m < m_ast$ (in contrast to massless $m=0$), and genuinely heavy, with $m > m_ast$, quark jets are quenched in the medium. We show that the corrections to the quenching factor at high energies are double-logarithmic and qualitatively of the same order as for the massless quark jet.
After an introduction motivating the study of quarkonium production, we review the recent developments in the phenomenology of quarkonium production in inclusive scatterings of hadrons and leptons. We naturally address data and predictions relevant f or the LHC, the Tevatron, RHIC, HERA, LEP, B factories and EIC. An up-to-date discussion of the contributions from feed downs within the charmonium and bottomonium families as well as from b hadrons to charmonia is also provided. This contextualises an exhaustive overview of new observables such as the associated production along with a Standard Model boson (photon, W and Z), with another quarkonium, with another heavy quark as well as with light hadrons or jets. We address the relevance of these reactions in order to improve our understanding of the mechanisms underlying quarkonium production as well as the physics of multi-parton interactions, in particular the double parton scatterings. An outlook towards future studies and facilities concludes this review.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا