ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher-order corrections to heavy-quark jet quenching

103   0   0.0 ( 0 )
 نشر من قبل Konrad Tywoniuk
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate higher-order corrections to the quenching factor of heavy-quark jets due to hard, in-medium splittings in the framework of the BDMPS-Z formalism. These corrections turn out to be sensitive to a single mass-scale $m_ast = (hat q L)^{1/2}$, where $hat q$ is the medium transport coefficient and $L$ the path length, and allow to draw a distinction between the way light, with $m < m_ast$ (in contrast to massless $m=0$), and genuinely heavy, with $m > m_ast$, quark jets are quenched in the medium. We show that the corrections to the quenching factor at high energies are double-logarithmic and qualitatively of the same order as for the massless quark jet.

قيم البحث

اقرأ أيضاً

We compute the inclusive jet spectrum in the presence of a dense QCD medium by going beyond the single parton energy loss approximation. We show that higher-order corrections are important yielding large logarithmic contributions that must be resumme d to all orders. This reflects the fact that jet quenching is sensitive to fluctuations of the jet substructure.
We present results for higher-order corrections to exclusive $mathrm{J}/psi$ production. This includes the first relativistic correction of order $v^2$ in quark velocity, and next-to-leading order corrections in $alpha_s$ for longitudinally polarized production. The relativistic corrections are found to be important for a good description of the HERA data, especially at small values of the photon virtuality. The next-to-leading order results for longitudinal production are evaluated numerically. We also demonstrate how the vector meson production provides complementary information to the structure functions for extracting the initial condition for the small-$x$ evolution of the dipole-proton scattering amplitude.
Transverse momentum broadening and energy loss of a propagating parton are dictated by the space-time profile of the jet transport coefficient $hat q$ in a dense QCD medium. The spatial gradient of $hat q$ perpendicular to the propagation direction c an lead to a drift and asymmetry in parton transverse momentum distribution. Such an asymmetry depends on both the spatial position along the transverse gradient and path length of a propagating parton as shown by numerical solutions of the Boltzmann transport in the simplified form of a drift-diffusion equation. In high-energy heavy-ion collisions, this asymmetry with respect to a plane defined by the beam and trigger particle (photon, hadron or jet) with a given orientation relative to the event plane is shown to be closely related to the transverse position of the initial jet production in full event-by-event simulations within the linear Boltzmann transport model. Such a gradient tomography can be used to localize the initial jet production position for more detailed study of jet quenching and properties of the quark-gluon plasma along a given propagation path in heavy-ion collisions.
We illustrate with both a Boltzmann diffusion equation and full simulations of jet propagation in heavy-ion collisions within the Linear Boltzmann Transport (LBT) model that the spatial gradient of the jet transport coefficient perpendicular to the p ropagation direction can lead to a drift and asymmetry in the transverse momentum distribution. Such an asymmetry depends on both the spatial position along the transverse gradience and the propagating length. It can be used to localize the initial jet production positions for more detailed studies of jet quenching and properties of the quark-gluon plasma in heavy-ion collisions.
96 - Varun Vaidya 2021
I look at the renormalization of the medium structure function and a medium induced jet function in a factorized cross section for jet substructure observables in Heavy Ion collisions. This is based on the formalism developed in cite{Vaidya:2020lih}, which uses an Open quantum system approach combined with the Effective Field Theory(EFT) for forward scattering to derive a factorization formula for jet observables which work as hard probes of a long lived dilute Quark Gluon Plasma(QGP) medium. I show that the universal medium structure function that captures the observable independent physics of the QGP has both UV and rapidity anomalous dimensions that appear due to medium induced Bremsstrahlung. The resulting Renormalization Group(RG) equations correspond to the BFKL equation and the running of the QCD coupling respectively. I present the first results for the numerical impact of resummation using these RG equations on the mean free path of the jet in the medium. I also briefly discuss the prospects of extending this formalism for a short lived dense medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا