ترغب بنشر مسار تعليمي؟ اضغط هنا

BFKL Azimuthal Imprints in Inclusive Three-jet Production at 7 and 13 TeV

70   0   0.0 ( 0 )
 نشر من قبل Francesco Giovanni Celiberto
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose the study of new observables in LHC inclusive events with three tagged jets, one in the forward direction, one in the backward direction and both well-separated in rapidity from the each other (Mueller-Navelet jets), together with a third jet tagged in central regions of rapidity. Since non-tagged associated mini-jet multiplicity is allowed, we argue that projecting the cross sections on azimuthal-angle components can provide several distinct tests of the BFKL dynamics. Realistic LHC kinematical cuts are introduced.

قيم البحث

اقرأ أيضاً

We discuss briefly a recent study of new observables in LHC inclusive events with three tagged jets. One jet is in the forward direction, the second is in the backward direction and well-separated in rapidity from the first, whereas, the third tagged jet is to be found in more central regions of the detector. Taking into consideration that non-tagged mini-jet emissions are allowed and that they may be accounted for by the BFKL gluon Green function, we project the cross sections on azimuthal-angle components and define suitable ratios based on these projections which can provide several distinct tests of the BFKL dynamics.
We provide a description of the transverse momentum spectrum of single inclusive forward jets produced at the LHC, at the center-of-mass energies of 7 and 13 TeV, using the high energy factorization (HEF) framework. We subsequently study double inclu sive forward jet production and, in particular, we calculate contributions to azimuthal angle distributions coming from double parton scattering. We also compare our results for double inclusive jet production to those obtained with the Pythia Monte Carlo generator. This comparison confirms that the HEF resummation acts like an initial state parton shower. It also points towards the need to include final state radiation effects in the HEF formalism.
We discuss the impact of corrections beyond the leading-logarithmic accuracy on some recently proposed LHC observables that are based on azimuthal-angle ratios in a kinematical setup that is an extension to the usual one for Mueller-Navelet jets, aft er requiring an extra tagged jet in central regions of rapidity. The corrections tend to be mild which suggests that these observables are an excellent way to probe the onset of BFKL effects at hadronic colliders.
100 - Julien Baglio , Le Duc Ninh 2019
We present a study of the polarization observables of the $W$ and $Z$ bosons in the process $p p to W^pm Zto e^pm u_e mu^+mu^-$ at the 13 TeV Large Hadron Collider. The calculation is performed at next-to-leading order, including the full QCD correc tions as well as the electroweak corrections, the latter being calculated in the double-pole approximation. The results are presented in the helicity coordinate system adopted by ATLAS and for different inclusive cuts on the di-muon invariant mass. We define left-right charge asymmetries related to the polarization fractions between the $W^+ Z$ and $W^- Z$ channels and we find that these asymmetries are large and sensitive to higher-order effects. Similar findings are also presented for charge asymmetries related to a P-even angular coefficient.
Recently, a new family of observables consisting of azimuthal-angle generalised ratios was proposed in a kinematical setup that resembles the usual Mueller-Navelet jets but with an additional tagged jet in the central region of rapidity. Non-tagged m inijet activity between the three jets can affect significantly the azimuthal angle orientation of the jets and is accounted for by the introduction of two BFKL gluon Green functions. Here, we calculate the, presumably, most relevant higher order corrections to the observables by now convoluting the three leading-order jet vertices with two gluon Green functions at next-to-leading logarithmic approximation. The corrections appear to be mostly moderate giving us confidence that the recently proposed observables are actually an excellent way to probe the BFKL dynamics at the LHC. Furthermore, we allow for the jets to take values in different rapidity bins in various configurations such that a comparison between our predictions and the experimental data is a straightforward task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا