ﻻ يوجد ملخص باللغة العربية
Multi-scale, multi-fidelity numerical simulations form the pillar of scientific applications related to numerically modeling fluids. However, simulating the fluid behavior characterized by the non-linear Navier Stokes equations are often times computational expensive. Physics informed machine learning methods is a viable alternative and as such has seen great interest in the community [refer to Kutz (2017); Brunton et al. (2020); Duraisamy et al. (2019) for a detailed review on this topic]. For full physics emulators, the cost of network inference is often trivial. However, in the current paradigm of data-driven fluid mechanics models are built as surrogates for complex sub-processes. These models are then used in conjunction to the Navier Stokes solvers, which makes ML model inference an important factor in the terms of algorithmic latency. With the ever growing size of networks, and often times overparameterization, exploring effective network compression techniques becomes not only relevant but critical for engineering systems design. In this study, we explore the applicability of pruning and quantization (FP32 to int8) methods for one such application relevant to modeling fluid turbulence. Post-compression, we demonstrate the improvement in the accuracy of network predictions and build intuition in the process by comparing the compressed to the original network state.
A discontinuous Galerkin (DG) method suitable for large-scale astrophysical simulations on Cartesian meshes as well as arbitrary static and moving Voronoi meshes is presented. Most major astrophysical fluid dynamics codes use a finite volume (FV) app
We demonstrate neural-network runtime prediction for complex, many-parameter, massively parallel, heterogeneous-physics simulations running on cloud-based MPI clusters. Because individual simulations are so expensive, it is crucial to train the netwo
This paper presents a novel generative model to synthesize fluid simulations from a set of reduced parameters. A convolutional neural network is trained on a collection of discrete, parameterizable fluid simulation velocity fields. Due to the capabil
We present a topology-based method for mesh-partitioning in three-dimensional discrete fracture network (DFN) simulations that take advantage of the intrinsic multi-level nature of a DFN. DFN models are used to simulate flow and transport through low
We propose a customized convolutional neural network based autoencoder called a hierarchical autoencoder, which allows us to extract nonlinear autoencoder modes of flow fields while preserving the contribution order of the latent vectors. As prelimin