ترغب بنشر مسار تعليمي؟ اضغط هنا

Indoor Positioning in High Speed OFDM Visible Light Communications

190   0   0.0 ( 0 )
 نشر من قبل Mohammadreza A. Kashani
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visible Light Communication (VLC) technology using light emitting diodes (LEDs) has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multiplexing (OFDM) has been applied to indoor wireless optical communications in order to mitigate the effect of multipath distortion of the optical channel as well as increasing data rate. In this paper, we investigate the indoor positioning accuracy of optical based OFDM techniques used in VLC systems. A positioning algorithm based on power attenuation is used to estimate the receiver coordinates. We further calculate the positioning errors in all the locations of a room and compare them with those of single carrier modulation scheme, i.e., on-off keying (OOK) modulation. We demonstrate that OFDM positioning system outperforms its conventional counterpart.



قيم البحث

اقرأ أيضاً

This paper presents an approach for visible light communication-based indoor positioning using compressed sensing. We consider a large number of light emitting diodes (LEDs) simultaneously transmitting their positional information and a user device e quipped with a photo-diode. By casting the LED signal separation problem into an equivalent compressed sensing framework, the user device is able to detect the set of nearby LEDs using sparse signal recovery algorithms. From this set, and using proximity method, position estimation is proposed based on the concept that if signal separation is possible, then overlapping light beam regions lead to decrease in positioning error due to increase in the number of reference points. The proposed method is evaluated in a LED-illuminated large-scale indoor open-plan office space scenario. The positioning accuracy is compared against the positioning error lower bound of the proximity method, for various system parameters.
Visible light communication (VLC) using light-emitting-diodes (LEDs) has been a popular research area recently. VLC can provide a practical solution for indoor positioning. In this paper, the impact of multipath reflections on indoor VLC positioning is investigated, considering a complex indoor environment with walls, floor and ceiling. For the proposed positioning system, an LED bulb is the transmitter and a photo-diode (PD) is the receiver to detect received signal strength (RSS) information. Combined deterministic and modified Monte Carlo (CDMMC) method is applied to compute the impulse response of the optical channel. Since power attenuation is applied to calculate the distance between the transmitter and receiver, the received power from each reflection order is analyzed. Finally, the positioning errors are estimated for all the locations over the room and compared with the previous works where no reflections considered. Three calibration approaches are proposed to decrease the effect of multipath reflections.
Visible Light Communication (VLC) using light emitting diodes (LEDs) has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multiplexing (OFD M) has been applied to indoor wireless optical communications in order to mitigate the effect of multipath distortion of the optical channel as well as increasing data rate. In this paper, a novel OFDM VLC system is proposed which can be utilized for both communications and indoor positioning. A positioning algorithm based on power attenuation is used to estimate the receiver coordinates. We further calculate the positioning errors in all the locations of a room and compare them with those using single carrier modulation scheme, i.e., on-off keying (OOK) modulation. We demonstrate that OFDM positioning system outperforms its conventional counterpart. Finally, we investigate the impact of different system parameters on the positioning accuracy of the proposed OFDM VLC system.
Channel capacity bounds are derived for a point-to-point indoor visible light communications (VLC) system with signal-dependent Gaussian noise. Considering both illumination and communication, the non-negative input of VLC is constrained by peak and average optical intensity constraints. Two scenarios are taken into account: one scenario has both average and peak optical intensity constraints, and the other scenario has only average optical intensity constraint. For both two scenarios, we derive closed-from expressions of capacity lower and upper bounds. Specifically, the capacity lower bound is derived by using the variational method and the property that the output entropy is invariably larger than the input entropy. The capacity upper bound is obtained by utilizing the dual expression of capacity and the principle of capacity-achieving source distributions that escape to infinity. Moreover, the asymptotic analysis shows that the asymptotic performance gap between the capacity lower and upper bounds approaches zero. Finally, all derived capacity bounds are confirmed using numerical results.
100 - Peng Deng , Mohsen Kavehrad 2016
The light emitting diode (LED) nonlinearities distortion induced degradation in the performance of visible light communication (VLC) systems can be controlled by optimizing the DC bias point of the LED. In this paper, we theoretically analyze and exp erimentally demonstrate the effect of white LED DC bias on nonlinear modulation bandwidth and dynamic range of the VLC system. The linear dynamic range is enhanced by using series-connected LED chips, and the modulation bandwidth is extended to 40 MHz by post-equalization without using a blue filter. The experimental results well match the theoretical model of LED nonlinear modulation characteristics. The results show that the modulation bandwidth increases and saturates with an increase in LED DC bias current due to nonlinear effect of carrier lifetime and junction capacitance. The optimized DC-bias current that corresponds to the minimum BER increases with the increase of data rate. A 60-Mbps NRZ transmission can be achieved with BER threshold of 10-3 by properly adjusting LED DC bias point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا