ﻻ يوجد ملخص باللغة العربية
We examine how the cosmic environment affects the chemical evolution of galaxies in the Universe by comparing the N/O ratio of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the forbidden [O III] and [S II] transitions provide estimates of a regions electron temperature and number density. We estimate the abundances of oxygen and nitrogen using these temperature and density estimates and the emission line fluxes [O II] 3727, [O III] 4959, 5007, and [N II] 6548, 6584 with the direct Te method. Using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, we are able to estimate the N/O ratio in 42 void dwarf galaxies and 89 dwarf galaxies in more dense regions. The N/O ratio for void dwarfs (Mr > -17) is slightly lower (12%) than for dwarf galaxies in denser regions. We also estimate the nitrogen and oxygen abundances of 2050 void galaxies and 3883 galaxies in more dense regions with Mr > -20. These somewhat brighter galaxies (but still fainter than L*) also display similar minor shifts in the N/O ratio. The shifts in the average and median element abundance values in all absolute magnitude bins studied are in the same direction, suggesting that the large-scale environment may influence the chemical evolution of galaxies. We discuss possible causes of such a large-scale environmental dependence of the chemical evolution of galaxies, including retarded star formation and a higher dark matter halo mass to stellar mass ratio in void galaxies.
Using data from four deep fields (COSMOS, AEGIS, ECDFS, and CDFN), we study the correlation between the position of galaxies in the star formation rate (SFR) versus stellar mass plane and local environment at $z<1.1$. To accurately estimate the galax
We derive the oxygen abundance (O/H), the nitrogen-to-oxygen (N/O) abundance ratio, and their corresponding radial gradients for a sample of 1431 galaxies from MaNGA DR15 survey using two different realizations of the strong line method: empirical R
We study how the cosmic environment affects galaxy evolution in the Universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbid
Within the standard model of hierarchical galaxy formation in a {Lambda}CDM Universe, the environment of galaxies is expected to play a key role in driving galaxy formation and evolution. In this paper we investigate whether and how the gas metallici
The exploration of the spatial distribution of chemical abundances in star-forming regions in galactic discs provides clues to understand the complex interplay of physical processes that regulate the star formation activity and the chemical enrichmen