ترغب بنشر مسار تعليمي؟ اضغط هنا

The dependence of the gradients of oxygen and nitrogen-to-oxygen on stellar age in MaNGA galaxies

71   0   0.0 ( 0 )
 نشر من قبل Igor Zinchenko A.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the oxygen abundance (O/H), the nitrogen-to-oxygen (N/O) abundance ratio, and their corresponding radial gradients for a sample of 1431 galaxies from MaNGA DR15 survey using two different realizations of the strong line method: empirical R calibration and the Bayesian model-based {sc HII-CHI-mistry} ({sc HCm}) code. We find that both abundance calculation methods reveal a correlation between the O/H gradient and the stellar mass of a galaxy. This relation is non-linear, with the steepest average gradients in the intermediate mass range and flatter average gradients for high- and low-mass galaxies. The relation between the N/O gradient and the stellar mass is, on average, non-linear with the steepest gradients in the intermediate mass range ($log(M/M_sun) sim 10$), flatter gradients for high-mass galaxies, and the flattest gradients for low-mass galaxies. However, the general trend of steepening N/O gradient for higher masses, reported in previous studies, remains evident. We find a dependence between the O/H and N/O gradients and the galaxy mean stellar age traced by the $D$(4000) index. For galaxies of lower masses, both gradients are, generally, steeper for intermediate values of $D$(4000) and flatter for low and high values of $D$(4000). Only the most massive galaxies do not show this correlation. We interpret this behaviour as an evolution of the metallicity gradients with the age of stellar population. Though the galaxies with a positive slope of the $D$(4000) radial gradient tend to have a flatter O/H and N/O gradients, as compared to those with a negative $D$(4000) gradient.



قيم البحث

اقرأ أيضاً

We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV-r colour and environments, as identified by both the large scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV-r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.
We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star forming regions in a representative sample of 550 nearby galaxies in the stellar mass range $rm 10^9-10^{11.5} M_odot$ with resolved spectroscopic data from the SDSS-IV MaNGA survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius ($rm R_e$), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with $rm log(M_star/M_odot) = 9.0$ but exhibiting slopes as steep as -0.14 dex $rm R_e^{-1}$ at $rm log(M_star/M_odot) = 10.5$ (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample ($rm R > 1.5 ~R_e$), but a flattening is observed in the central regions ($rm R < 1~ R_e$). In the outer regions ($rm R > 2.0 ~R_e$) we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.
We examine how the cosmic environment affects the chemical evolution of galaxies in the Universe by comparing the N/O ratio of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the forbidden [O III] and [S II] transitions p rovide estimates of a regions electron temperature and number density. We estimate the abundances of oxygen and nitrogen using these temperature and density estimates and the emission line fluxes [O II] 3727, [O III] 4959, 5007, and [N II] 6548, 6584 with the direct Te method. Using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, we are able to estimate the N/O ratio in 42 void dwarf galaxies and 89 dwarf galaxies in more dense regions. The N/O ratio for void dwarfs (Mr > -17) is slightly lower (12%) than for dwarf galaxies in denser regions. We also estimate the nitrogen and oxygen abundances of 2050 void galaxies and 3883 galaxies in more dense regions with Mr > -20. These somewhat brighter galaxies (but still fainter than L*) also display similar minor shifts in the N/O ratio. The shifts in the average and median element abundance values in all absolute magnitude bins studied are in the same direction, suggesting that the large-scale environment may influence the chemical evolution of galaxies. We discuss possible causes of such a large-scale environmental dependence of the chemical evolution of galaxies, including retarded star formation and a higher dark matter halo mass to stellar mass ratio in void galaxies.
We use the EAGLE simulations to study the oxygen abundance gradients of gas discs in galaxies within the stellar mass range [10^9.5, 10^10.8]Mo at z=0. The estimated median oxygen gradient is -0.011 (0.002) dex kpc^-1, which is shallower than observe d. No clear trend between simulated disc oxygen gradient and galaxy stellar mass is found when all galaxies are considered. However, the oxygen gradient shows a clear correlation with gas disc size so that shallower abundance slopes are found for increasing gas disc sizes. Positive oxygen gradients are detected for ~40 per cent of the analysed gas discs, with a slight higher frequency in low mass galaxies. Galaxies that have quiet merger histories show a positive correlation between oxygen gradient and stellar mass, so that more massive galaxies tend to have shallower metallicity gradients. At high stellar mass, there is a larger fraction of rotational-dominated galaxies in low density regions. At low stellar mass, non-merger galaxies show a large variety of oxygen gradients and morphologies. The normalization of the disc oxygen gradients in non-merger galaxies by the effective radius removes the trend with stellar mass. Conversely, galaxies that experienced mergers show a weak relation between oxygen gradient and stellar mass. Additionally, the analysed EAGLE discs show no clear dependence of the oxygen gradients on local environment, in agreement with current observational findings.
Bars in galaxies are thought to stimulate both inflow of material and radial mixing along them. Observational evidence for this mixing has been inconclusive so far however, limiting the evaluation of the impact of bars on galaxy evolution. We now use results from the MaNGA integral field spectroscopic survey to characterise radial stellar age and metallicity gradients along the bar and outside the bar in 128 strongly barred galaxies. We find that age and metallicity gradients are flatter in the barred regions of almost all barred galaxies when compared to corresponding disk regions at the same radii. Our results re-emphasize the key fact that by azimuthally averaging integral field spectroscopic data one loses important information from non-axisymmetric galaxy components such as bars and spiral arms. We interpret our results as observational evidence that bars are radially mixing material in galaxies of all stellar masses, and for all bar morphologies and evolutionary stages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا