ﻻ يوجد ملخص باللغة العربية
Within the standard model of hierarchical galaxy formation in a {Lambda}CDM Universe, the environment of galaxies is expected to play a key role in driving galaxy formation and evolution. In this paper we investigate whether and how the gas metallicity and the star formation surface density ({Sigma}_SFR) depend on galaxy environment. To this end we analyse a sample of 1162 local, star-forming galaxies from the galaxy survey Mapping Nearby Galaxies at APO (MaNGA). Generally, both parameters do not show any significant dependence on environment. However, in agreement with previous studies, we find that low-mass satellite galaxies are an exception to this rule. The gas metallicity in these objects increases while their {Sigma}SFR decreases slightly with environmental density. The present analysis of MaNGA data allows us to extend this to spatially resolved properties. Our study reveals that the gas metallicity gradients of low-mass satellites flatten and their {Sigma}SFR gradients steepen with increasing environmental density. By extensively exploring a chemical evolution model, we identify two scenarios that are able to explain this pattern: metal-enriched gas accretion or pristine gas inflow with varying accretion timescales. The latter scenario better matches the observed {Sigma}SFR gradients, and is therefore our preferred solution. In this model, a shorter gas accretion timescale at larger radii is required. This suggests that outside-in quenching governs the star formation processes of low-mass satellite galaxies in dense environments.
We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore
We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star forming regions in a representative sample of 550 nearby galaxies in the stellar mass range $rm 10^9-10^{11.5} M_odot$ with resolved spectroscopic data from the
In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-depende
We measured gas-phase metallicity, ionisation parameter and dust extinction for 1795 representative local star-forming galaxies using integral field spectroscopy from the SDSS-IV MaNGA survey. We self-consistently derive these quantities by comparing
Gas-phase abundances and abundance gradients provide much information on past stellar generations, and are powerful probes of how galaxies evolve. Gas abundance gradients in galaxies have been studied as functions of galaxies mass and size individual