ﻻ يوجد ملخص باللغة العربية
LSST is expected to yield ~10^7 light curves over the course of its mission, which will require a concerted effort in automated classification. Stochastic processes provide one means of quantitatively describing variability with the potential advantage over simple light curve statistics that the parameters may be physically meaningful. Here, we survey a large sample of periodic, quasi-periodic, and stochastic OGLE-III variables using the damped random walk (DRW, CARMA(1,0)) and quasi-periodic oscillation (QPO, CARMA(2,1)) stochastic process models. The QPO model is described by an amplitude, a period, and a coherence time-scale, while the DRW has only an amplitude and a time-scale. We find that the periodic and quasi-periodic stellar variables are generally better described by a QPO than a DRW, while quasars are better described by the DRW model. There are ambiguities in interpreting the QPO coherence time due to non-sinusoidal light curve shapes, signal-to-noise, error mischaracterizations, and cadence. Higher-order implementations of the QPO model that better capture light curve shapes are necessary for the coherence time to have its implied physical meaning. Independent of physical meaning, the extra parameter of the QPO model successfully distinguishes most of the classes of periodic and quasi-periodic variables we consider.
We present a novel automated methodology to detect and classify periodic variable stars in a large database of photometric time series. The methods are based on multivariate Bayesian statistics and use a multi-stage approach. We applied our method to
We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from
A community meeting on the topic of Radio Astronomy in the LSST Era was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the t
We develop a non-linear semi-parametric Gaussian process model to estimate periods of Miras with sparsely-sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use max
The Large Synoptic Survey Telescope (LSST) will produce an unprecedented amount of light curves using six optical bands. Robust and efficient methods that can aggregate data from multidimensional sparsely-sampled time series are needed. In this paper