ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling Space and Time in Video with Hierarchical Variational Auto-encoders

330   0   0.0 ( 0 )
 نشر من قبل Will Grathwohl
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There are many forms of feature information present in video data. Principle among them are object identity information which is largely static across multiple video frames, and object pose and style information which continuously transforms from frame to frame. Most existing models confound these two types of representation by mapping them to a shared feature space. In this paper we propose a probabilistic approach for learning separable representations of object identity and pose information using unsupervised video data. Our approach leverages a deep generative model with a factored prior distribution that encodes properties of temporal invariances in the hidden feature set. Learning is achieved via variational inference. We present results of learning identity and pose information on a dataset of moving characters as well as a dataset of rotating 3D objects. Our experimental results demonstrate our models success in factoring its representation, and demonstrate that the model achieves improved performance in transfer learning tasks.



قيم البحث

اقرأ أيضاً

The variational auto-encoder (VAE) is a popular method for learning a generative model and embeddings of the data. Many real datasets are hierarchically structured. However, traditional VAEs map data in a Euclidean latent space which cannot efficient ly embed tree-like structures. Hyperbolic spaces with negative curvature can. We therefore endow VAEs with a Poincare ball model of hyperbolic geometry as a latent space and rigorously derive the necessary methods to work with two main Gaussian generalisations on that space. We empirically show better generalisation to unseen data than the Euclidean counterpart, and can qualitatively and quantitatively better recover hierarchical structures.
312 - Yu Duan , Canwen Xu , Jiaxin Pei 2019
Conditional Text Generation has drawn much attention as a topic of Natural Language Generation (NLG) which provides the possibility for humans to control the properties of generated contents. Current conditional generation models cannot handle emergi ng conditions due to their joint end-to-end learning fashion. When a new condition added, these techniques require full retraining. In this paper, we present a new framework named Pre-train and Plug-in Variational Auto-Encoder (PPVAE) towards flexible conditional text generation. PPVAE decouples the text generation module from the condition representation module to allow one-to-many conditional generation. When a fresh condition emerges, only a lightweight network needs to be trained and works as a plug-in for PPVAE, which is efficient and desirable for real-world applications. Extensive experiments demonstrate the superiority of PPVAE against the existing alternatives with better conditionality and diversity but less training effort.
We present a method for learning latent stochastic differential equations (SDEs) from high dimensional time series data. Given a time series generated from a lower dimensional It^{o} process, the proposed method uncovers the relevant parameters of th e SDE through a self-supervised learning approach. Using the framework of variational autoencoders (VAEs), we consider a conditional generative model for the data based on the Euler-Maruyama approximation of SDE solutions. Furthermore, we use recent results on identifiability of semi-supervised learning to show that our model can recover not only the underlying SDE parameters, but also the original latent space, up to an isometry, in the limit of infinite data. We validate the model through a series of different simulated video processing tasks where the underlying SDE is known. Our results suggest that the proposed method effectively learns the underlying SDE, as predicted by the theory.
Variational auto-encoders (VAEs) are deep generative latent variable models that can be used for learning the distribution of complex data. VAEs have been successfully used to learn a probabilistic prior over speech signals, which is then used to per form speech enhancement. One advantage of this generative approach is that it does not require pairs of clean and noisy speech signals at training. In this paper, we propose audio-visual variants of VAEs for single-channel and speaker-independent speech enhancement. We develop a conditional VAE (CVAE) where the audio speech generative process is conditioned on visual information of the lip region. At test time, the audio-visual speech generative model is combined with a noise model based on nonnegative matrix factorization, and speech enhancement relies on a Monte Carlo expectation-maximization algorithm. Experiments are conducted with the recently published NTCD-TIMIT dataset as well as the GRID corpus. The results confirm that the proposed audio-visual CVAE effectively fuses audio and visual information, and it improves the speech enhancement performance compared with the audio-only VAE model, especially when the speech signal is highly corrupted by noise. We also show that the proposed unsupervised audio-visual speech enhancement approach outperforms a state-of-the-art supervised deep learning method.
80 - Fengfu Li , Hong Qiao , Bo Zhang 2017
Traditional image clustering methods take a two-step approach, feature learning and clustering, sequentially. However, recent research results demonstrated that combining the separated phases in a unified framework and training them jointly can achie ve a better performance. In this paper, we first introduce fully convolutional auto-encoders for image feature learning and then propose a unified clustering framework to learn image representations and cluster centers jointly based on a fully convolutional auto-encoder and soft $k$-means scores. At initial stages of the learning procedure, the representations extracted from the auto-encoder may not be very discriminative for latter clustering. We address this issue by adopting a boosted discriminative distribution, where high score assignments are highlighted and low score ones are de-emphasized. With the gradually boosted discrimination, clustering assignment scores are discriminated and cluster purities are enlarged. Experiments on several vision benchmark datasets show that our methods can achieve a state-of-the-art performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا