ﻻ يوجد ملخص باللغة العربية
We are proposing a facility based on high gradient acceleration via x-band RF structures and plasma acceleration. We plan to reach an electron energy of the order of 1 GeV, suitable to drive a Free Electron Laser for applications in the so called water window (2 - 4 nm). A conceptual design of the beamline, from the photon beam from the undulators to the user experimental chamber, mainly focusing on diagnostic, manipulation and transport of the radiation is presented and discussed. We also briefly outline a user end station for coherent imaging, laser ablation and pump-probe experiments.
On the wake of the results obtained so far at the SPARC_LAB test-facility at the Laboratori Nazionali di Frascati (Italy), we are currently investigating the possibility to design and build a new multi-disciplinary user-facility, equipped with a soft
In the framework of the upgrade of the SPARC_LAB facility at INFN-LNF, named EuPRAXIA@SPARC_LAB, a high gradient linac is foreseen. One of the most suitable options is to realize it in X-band. A preliminary design study of both accelerating structure
Laser Plasma Acceleration (LPA) is capable of producing a GeV beam within a cm accelerating distance, but with a rather high initial divergence and large energy spread. COXINEL aims to demonstrate a compact Free Electron Laser using such a source, wh
In the framework of the Eupraxia Design Study an advanced accelerator facility EUPRAXIA@SPARC_LAB has been proposed to be realized at Frascati (Italy) Laboratories of INFN. Two advanced acceleration schemes will be applied, namely an ultimate high gr
At EuPRAXIA@SPARC_LAB, the unique combination of an advanced high-brightness RF injector and a plasma-based accelerator will drive a new multi-disciplinary user-facility. The facility, that is currently under study at INFN-LNF Laboratories (Frascati,