ترغب بنشر مسار تعليمي؟ اضغط هنا

Strictly unital A-infinity algebras

78   0   0.0 ( 0 )
 نشر من قبل Jesse Burke
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Jesse Burke




اسأل ChatGPT حول البحث

Given a graded module over a commutative ring, we define a dg-Lie algebra whose Maurer-Cartan elements are the strictly unital A-infinity algebra structures on that module. We use this to generalize Positselskis result that a curvature term on the bar construction compensates for a lack of augmentation, from a field to arbitrary commutative base ring. We also use this to show that the reduced Hochschild cochains control the strictly unital deformation functor. We motivate these results by giving a full development of the deformation theory of a nonunital A-infinity algebra.



قيم البحث

اقرأ أيضاً

Let A be a connected graded algebra and let E denote its Ext-algebra. There is a natural A-infinity algebra structure on E, and we prove that this structure is mainly determined by the relations of A. In particular, the coefficients of the A-infinity products m_n restricted to the tensor powers of Ext^1 give the coefficients of the relations of A. We also relate the m_ns to Massey products.
130 - Adam Rennie , Aidan Sims 2016
We revisit the characterisation of modules over non-unital $C^*$-algebras analogous to modules of sections of vector bundles. A fullness condition on the associated multiplier module characterises a class of modules which closely mirror the commutati ve case. We also investigate the multiplier-module construction in the context of bi-Hilbertian bimodules, particularly those of finite numerical index and finite Watatani index.
114 - Jesse Burke 2018
We show that an A-infinity algebra structure can be transferred to a projective resolution of the complex underlying any A-infinity algebra. Under certain connectedness assumptions, this transferred structure is unique up to homotopy. In contrast to the classical results on transfer of A-infinity structures along homotopy equivalences, our result is of interest when the ground ring is not a field. We prove an analog for A-infinity module structures, and both transfer results preserve strict units.
In this paper, we study weakly unital dg categories as they were defined by Kontsevich and Soibelman [KS, Sect.4]. We construct a cofibrantly generated Quillen model structure on the category $mathrm{Cat}_{mathrm{dgwu}}(Bbbk)$ of small weakly unital dg categories over a field $Bbbk$. Our model structure can be thought of as an extension of the model structure on the category $mathrm{Cat}_{mathrm{dg}}(Bbbk)$ of (strictly unital) small dg categories over $Bbbk$, due to Tabuada [Tab]. More precisely, we show that the imbedding of $mathrm{Cat}_{mathrm{dg}}(Bbbk)$ to $mathrm{Cat}_{mathrm{dgwu}}(Bbbk)$ is a right adjoint of a Quillen pair of functors. We prove that this Quillen pair is, in turn, a Quillen equivalence. In course of the proof, we study a non-symmetric dg operad $mathcal{O}$, governing the weakly unital dg categories, which is encoded in the Kontsevich-Soibelman definition. We prove that this dg operad is quasi-isomorphic to the operad $mathrm{Assoc}_+$ of unital associative algebras.
The notion of a derived A-infinity algebra, considered by Sagave, is a generalization of the classical notion of A-infinity algebra, relevant to the case where one works over a commutative ring rather than a field. We initiate a study of the homotopy theory of these algebras, by introducing a hierarchy of notions of homotopy between the morphisms of such algebras. We define r-homotopy, for non-negative integers r, in such a way that r-homotopy equivalences underlie E_r-quasi-isomorphisms, defined via an associated spectral sequence. We study the special case of twisted complexes (also known as multicomplexes) first since it is of independent interest and this simpler case clearly exemplifies the structure we study. We also give two new interpretations of derived A-infinity algebras as A-infinity algebras in twisted complexes and as A-infinity algebras in split filtered cochain complexes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا