ترغب بنشر مسار تعليمي؟ اضغط هنا

Relations between infinitesimal non-commutative cumulants

67   0   0.0 ( 0 )
 نشر من قبل Adri\\'an Celestino
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Boolean, free and monotone cumulants as well as relations among them, have proven to be important in the study of non-commutative probability theory. Quite notably, Boolean cumulants were successfully used to study free infinite divisibility via the Boolean Bercovici--Pata bijection. On the other hand, in recent years the concept of infinitesimal non-commutative probability has been developed, together with the notion of infinitesimal cumulants which can be useful in the context of combinatorial questions. In this paper, we show that the known relations among free, Boolean and monotone cumulants still hold in the infinitesimal framework. Our approach is based on the use of Grassmann algebra. Formulas involving infinitesimal cumulants can be obtained by applying a formal derivation to known formulas. The relations between the various types of cumulants turn out to be captured via the shuffle algebra approach to moment-cumulant relations in non-commutative probability theory. In this formulation, (free, Boolean and monotone) cumulants are represented as elements of the Lie algebra of infinitesimal characters over a particular combinatorial Hopf algebra. The latter consists of the graded connected double tensor algebra defined over a non-commutative probability space and is neither commutative nor cocommutative. In this note it is shown how the shuffle algebra approach naturally extends to the notion of infinitesimal non-commutative probability space. The basic step consists in replacing the base field as target space of linear Hopf algebra maps by the Grassmann algebra over the base field. We also consider the infinitesimal analog of the Boolean Bercovici--Pata map.



قيم البحث

اقرأ أيضاً

We consider the group (G,*) of unitized multiplicative functions in the incidence algebra of non-crossing partitions, where * denotes the convolution operation. We introduce a larger group (Gtilde,*) of unitized functions from the same incidence alge bra, which satisfy a weaker condition of being semi-multiplicative. The natural action of Gtilde on sequences of multilinear functionals of a non-commutative probability space captures the combinatorics of transitions between moments and some brands of cumulants that are studied in the non-commutative probability literature. We use the framework of Gtilde in order to explain why the multiplication of free random variables can be very nicely described in terms of Boolean cumulants and more generally in terms of t-Boolean cumulants, a one-parameter interpolation between free and Boolean cumulants arising from work of Bozejko and Wysoczanski. It is known that the group G can be naturally identified as the group of characters of the Hopf algebra Sym of symmetric functions. We show that Gtilde can also be identified as group of characters of a Hopf algebra T, which is an incidence Hopf algebra in the sense of Schmitt. Moreover, the inclusion of G in Gtilde turns out to be the dual of a natural bialgebra homomorphism from T onto Sym.
We prove a Caratheodory-Fejer type interpolation theorem for certain matrix convex sets in $C^d$ using the Blecher-Ruan-Sinclair characterization of abstract operator algebras. Our results generalize the work of Dmitry S. Kalyuzhnyi-Verbovetzkii for the d-dimensional non-commutative polydisc.
130 - Adam Rennie , Aidan Sims 2016
We revisit the characterisation of modules over non-unital $C^*$-algebras analogous to modules of sections of vector bundles. A fullness condition on the associated multiplier module characterises a class of modules which closely mirror the commutati ve case. We also investigate the multiplier-module construction in the context of bi-Hilbertian bimodules, particularly those of finite numerical index and finite Watatani index.
We prove that for matrix algebras $M_n$ there exists a monomorphism $(prod_n M_n/oplus_n M_n)otimes C(S^1) to {cal Q} $ into the Calkin algebra which induces an isomorphism of the $K_1$-groups. As a consequence we show that every vector bundle over a classifying space $Bpi$ which can be obtained from an asymptotic representation of a discrete group $pi$ can be obtained also from a representation of the group $pitimes Z$ into the Calkin algebra. We give also a generalization of the notion of Fredholm representation and show that asymptotic representations can be viewed as asymptotic Fredholm representations.
A non-commutative, planar, Hopf algebra of rooted trees was proposed in L. Foissy, Bull. Sci. Math. 126 (2002) 193-239. In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a qua ntum field theoretical (QFT) idea, namely the one of introducing discrete scales on each edge of the graph (which, within the QFT framework, corresponds to energy scales of the associated propagators).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا