ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fermi surface of Sr2RuO4: spin-orbit and anisotropic Coulomb interaction effects

266   0   0.0 ( 0 )
 نشر من قبل Eva Pavarini
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The topology of the Fermi surface of Sr2RuO4 is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multi-orbital systems. In addition, we find that the low-energy self-energy matrix -- responsible for the reshaping of the Fermi surface -- sizably differ from the static Hartree-Fock limit. Finally, we find a strong spin-orbital {entanglement}; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr2RuO4.



قيم البحث

اقرأ أيضاً

We present a first-principle study of spin-orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4. For nearly degenerate bands, spin-orbit coupling leads to a dramatic change of the Fermi surface with respect to non-relativistic calculati ons; as evidenced by the comparison with experiments on Sr2RhO4, it cannot be disregarded. For Sr2RuO4, the Fermi surface modifications are more subtle but equally dramatic in the detail: spin-orbit coupling induces a strong momentum dependence, normal to the RuO2 planes, for both orbital and spin character of the low-energy electronic states. These findings have profound implications for the understanding of unconventional superconductivity in Sr2RuO4.
We study electron transport through a multi-level quantum dot with Rashba spin-orbit interaction in the presence of local Coulomb repulsion. Motivated by recent experiments, we compute the level splitting induced by the spin-orbit interaction at fini te Zeeman fields $B$, which provides a measure of the renormalized spin-orbit energy. This level splitting is responsible for the suppression of the Kondo ridges at finite $B$ characteristic for the multi-level structure. In addition, the dependence of renormalized $g$-factors on the relative orientation of the applied $B$ field and the spin-orbit direction following two different protocols used in experiments is investigated.
It is a common perception that the transport of a spin current in polycrystalline metal is isotropic and independent of the polarization direction, even though spin current is a tensorlike quantity and its polarization direction is a key variable. We demonstrate surprising anisotropic spin relaxation in mesoscopic polycrystalline Cu channels in nonlocal spin valves. For directions in the substrate plane, the spin-relaxation length is longer for spins parallel to the Cu channel than for spins perpendicular to it, by as much as 9% at 10 K. Spin-orbit effects on the surfaces of Cu channels can account for this anisotropic spin relaxation. The finding suggests novel tunability of spin current, not only by its polarization direction but also by electrostatic gating.
We investigate the interplay of spin-orbit coupling (SOC) and electronic correlations in Sr2RuO4 using dynamical mean-field theory. We find that SOC does not affect the correlation-induced renormalizations, which validates the Hunds metal picture of ruthenates even in the presence of the sizable SOC relevant to these materials. Nonetheless, SOC found to change significantly the electronic structure at k-points where a degeneracy applies in its absence. We explain why these two observations are consistent with one another and calculate effects of SOC on the correlated electronic structure. The magnitude of these effects is found to depend on the energy of the quasiparticle state under consideration, leading us to introduce the notion of an energy-dependent quasiparticle spin-orbit coupling. This notion is generally applicable to all materials in which both the spin-orbit coupling and electronic correlations are sizable.
131 - Philipp Hoepfner 2012
The spin texture of the metallic two-dimensional electron system (root3 x root3)-Au/Ge(111) is revealed by fully three-dimensional spin-resolved photoemission, as well as by density functional calculations. The large hexagonal Fermi surface, generate d by the Au atoms, shows a significant splitting due to spin-orbit interactions. The planar components of the spin exhibit helical character, accompanied by a strong out-of-plane spin component with alternating signs along the six Fermi surface sections. Moreover, in-plane spin rotations towards a radial direction are observed close to the hexagon corners. Such a threefold-symmetric spin pattern is not described by the conventional Rashba model. Instead, it reveals an interplay with Dresselhaus-like spin-orbit effects as a result of the crystalline anisotropies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا