ترغب بنشر مسار تعليمي؟ اضغط هنا

CO+ as a probe of the origin of CO in diffuse interstellar clouds

73   0   0.0 ( 0 )
 نشر من قبل Maryvonne Gerin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The chemistry of the diffuse interstellar medium is driven by the combined influences of cosmic rays, ultraviolet (UV) radiation, and turbulence. Previously detected at the outer edges of photodissociation regions (PDRs) and formed from the reaction of C+ and OH, CO+ is the main chemical precursor of HCO+ and CO in a thermal, cosmic-ray, and UV-driven chemistry. Our aim was to test whether the thermal cosmic-ray and UV-driven chemistry is producing CO in diffuse interstellar molecular gas through the intermediate formation of CO+ We searched for CO+ absorption with the Atacama Large Millimeter Array (ALMA) toward two quasars with known Galactic foreground absorption from diffuse interstellar gas, J1717-3342 and J1744-3116, targeting the two strongest hyperfine components of the J=2-1 transition near 236 GHz. We could not detect CO+ but obtained sensitive upper limits toward both targets. The derived upper limits on the CO+ column densities represent about 4% of the HCO+ column densities. The corresponding upper limit on the CO+ abundance relative to H2 is <1.2 x 10^{-10}. The non-detection of CO+ confirms that HCO+ is mainly produced in the reaction between oxygen and carbon hydrides, CH2+ or CH3+ , induced by suprathermal processes, while CO+ and HOC+ result from reactions of C+ with OH and H2O. The densities required to form CO molecules at low extinction are consistent with this scheme.



قيم البحث

اقرأ أيضاً

165 - R. Visser 2009
Aims. Photodissociation by UV light is an important destruction mechanism for CO in many astrophysical environments, ranging from interstellar clouds to protoplanetary disks. The aim of this work is to gain a better understanding of the depth depende nce and isotope-selective nature of this process. Methods. We present a photodissociation model based on recent spectroscopic data from the literature, which allows us to compute depth-dependent and isotope-selective photodissociation rates at higher accuracy than in previous work. The model includes self-shielding, mutual shielding and shielding by atomic and molecular hydrogen, and it is the first such model to include the rare isotopologues C17O and 13C17O. We couple it to a simple chemical network to analyse CO abundances in diffuse and translucent clouds, photon-dominated regions, and circumstellar disks. Results. The photodissociation rate in the unattenuated interstellar radiation field is 2.6e-10 s^-1, 30% higher than currently adopted values. Increasing the excitation temperature or the Doppler width can reduce the photodissociation rates and the isotopic selectivity by as much as a factor of three for temperatures above 100 K. The model reproduces column densities observed towards diffuse clouds and PDRs, and it offers an explanation for both the enhanced and the reduced N(12CO)/N(13CO) ratios seen in diffuse clouds. The photodissociation of C17O and 13C17O shows almost exactly the same depth dependence as that of C18O and 13C18O, respectively, so 17O and 18O are equally fractionated with respect to 16O. This supports the recent hypothesis that CO photodissociation in the solar nebula is responsible for the anomalous 17O and 18O abundances in meteorites.
We report the detection of absorption by interstellar hydroxyl cations and water cations, along the sight-line to the bright continuum source W49N. We have used Herschels HIFI instrument, in dual beam switch mode, to observe the 972 GHz N = 1 - 0 tra nsition of OH+ and the 1115 GHz 1(11) - 0(00) transition of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong absorption by OH+, in foreground material at velocities in the range 0 to 70 km/s with respect to the local standard of rest. The inferred OH+/H2O+ abundance ratio ranges from ~ 3 to ~ 15, implying that the observed OH+ arises in clouds of small molecular fraction, in the 2 - 8% range. This conclusion is confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which is similar to that of atomic hydrogen, as observed by means of 21 cm absorption measurements, and dissimilar from that typical of other molecular tracers. The observed OH+/H abundance ratio of a few E-8 suggests a cosmic ray ionization rate for atomic hydrogen of (0.6 - 2.4) E-16 s-1, in good agreement with estimates inferred previously for diffuse clouds in the Galactic disk from observations of interstellar H3+ and other species.
We present and analyze deep Herschel/HIFI observations of the [CII] 158um, [CI] 609um, and [CI] 370um lines towards 54 lines-of-sight (LOS) in the Large and Small Magellanic clouds. These observations are used to determine the physical conditions of the line--emitting gas, which we use to study the transition from atomic to molecular gas and from C^+ to C^0 to CO in their low metallicity environments. We trace gas with molecular fractions in the range 0.1<f(H2)<1, between those in the diffuse H2 gas detected by UV absorption (f(H2)<0.2) and well shielded regions in which hydrogen is essentially completely molecular. The C^0 and CO column densities are only measurable in regions with molecular fractions f(H2)>0.45 in both the LMC and SMC. Ionized carbon is the dominant gas-phase form of this element that is associated with molecular gas, with C^0 and CO representing a small fraction, implying that most (89% in the LMC and 77% in the SMC) of the molecular gas in our sample is CO-dark H2. The mean X_CO conversion factors in our LMC and SMC sample are larger than the value typically found in the Milky Way. When applying a correction based on the filling factor of the CO emission, we find that the values of X_CO in the LMC and SMC are closer to that in the Milky Way. The observed [CII] intensity in our sample represents about 1% of the total far-infrared intensity from the LOSs observed in both Magellanic Clouds.
Context. Insight into the conditions that drive the physics and chemistry in interstellar clouds is gained from determining the abundance and charge state of their components. Aims. We propose an evaluation of the C60:C60+ ratio in diffuse and transl ucent interstellar clouds that exploits electronic absorption bands so as not to rely on ambiguous IR emission measurements. Methods. The ratio is determined by analyzing archival spectra and literature data. Information on the cation population is obtained from published characteristics of the main diffuse interstellar bands attributed to C60+ and absorption cross sections already reported for the vibronic bands of the cation. The population of neutral molecules is described in terms of upper limit because the relevant vibronic bands of C60 are not brought out by observations. We revise the oscillator strengths reported for C60 and measure the spectrum of the molecule isolated in Ne ice to complete them. Results. We scale down the oscillator strengths for absorption bands of C60 and find an upper limit of approximately 1.3 for the C60:C60+ ratio. Conclusions. We conclude that the fraction of neutral molecules in the buckminsterfullerene population of diffuse and translucent interstellar clouds may be notable despite the non-detection of the expected vibronic bands. More certainty will require improved laboratory data and observations.
153 - Keith T. Smith 2013
We present observations which probe the small-scale structure of the interstellar medium using diffuse interstellar bands (DIBs). Towards HD 168075/6 in the Eagle Nebula, significant differences in DIB absorption are found between the two lines of si ght, which are separated by 0.25 pc, and {lambda}5797 exhibits a velocity shift. Similar data are presented for four stars in the {mu} Sgr system. We also present a search for variations in DIB absorption towards {kappa} Vel, where the atomic lines are known to vary on scales of ~10 AU. Observations separated by ~9 yr yielded no evidence for changes in DIB absorption strength over this scale, but do reveal an unusual DIB spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا