ترغب بنشر مسار تعليمي؟ اضغط هنا

The Behavior of Selected Diffuse Interstellar Bands with Molecular Fraction in Diffuse Atomic and Molecular Clouds

125   0   0.0 ( 0 )
 نشر من قبل Daniel Welty
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Haoyu Fan




اسأل ChatGPT حول البحث

We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form [$f$(H$_2$)], with comparisons to the corresponding behavior of various known atomic and molecular species. The equivalent widths of the five normal DIBs ($lambdalambda$5780.5, 5797.1, 6196.0, 6283.8, and 6613.6), normalized to $E(B-V)$, show a Lambda-shaped behavior: they increase at low $f$(H$_2$), peak at $f$(H$_2$) ~ 0.3, and then decrease. The similarly normalized column densities of Ca, Ca$^+$, Ti$^+$, and CH$^+$ also decline for $f$(H$_2$) > 0.3. In contrast, the normalized column densities of Na, K, CH, CN, and CO increase monotonically with $f$(H$_2$), and the trends exhibited by the three C$_2$ DIBs ($lambdalambda$4726.8, 4963.9, and 4984.8) lie between those two general behaviors. These trends with $f$(H$_2$) are accompanied by cosmic scatter, the dispersion at any given $f$(H$_2$) being significantly larger than the individual errors of measurement. The Lambda-shaped trends suggest the balance between creation and destruction of the DIB carriers differs dramatically between diffuse atomic and diffuse molecular clouds; additional processes besides ionization and shielding are needed to explain those observed trends. Except for several special cases, the highest $W$(5780)/$W$(5797) ratios, characterizing the so-called sigma-zeta effect, occur only at $f$(H$_2$) < 0.2. We propose a sequence of DIBs based on trends in their pair-wise strength ratios with increasing $f$(H$_2$). In order of increasing environmental density, we find the $lambda$6283.8 and $lambda$5780.5 DIBs, the $lambda$6196.0 DIB, the $lambda$6613.6 DIB, the $lambda$5797.1 DIB, and the C$_2$ DIBs.



قيم البحث

اقرأ أيضاً

403 - David A. Neufeld 2016
We present a general parameter study, in which the abundance of interstellar argonium (ArH$^+$) is predicted using a model for the physics and chemistry of diffuse interstellar gas clouds. Results have been obtained as a function of UV radiation fiel d, cosmic-ray ionization rate, and cloud extinction. No single set of cloud parameters provides an acceptable fit to the typical ArH$^+$, OH$^+$ and $rm H_2O^+$ abundances observed in diffuse clouds within the Galactic disk. Instead, the observed abundances suggest that ArH$^+$ resides primarily in a separate population of small clouds of total visual extinction of at most 0.02 mag per cloud, within which the column-averaged molecular fraction is in the range $10^{-5} - 10^{-2}$, while OH$^+$ and $rm H_2O^+$ reside primarily in somewhat larger clouds with a column-averaged molecular fraction $sim 0.2$. This analysis confirms our previous suggestion that the argonium molecular ion is a unique tracer of almost purely atomic gas.
534 - Daniel E. Welty 2014
We discuss the absorption due to various constituents of the interstellar medium of M82 seen in moderately high resolution, high signal-to-noise ratio optical spectra of SN 2014J. Complex absorption from M82 is seen, at velocities 45 $le$ $v_{rm LSR} $ $le$ 260 km s$^{-1}$, for Na I, K I, Ca I, Ca II, CH, CH$^+$, and CN; many of the diffuse interstellar bands (DIBs) are also detected. Comparisons of the column densities of the atomic and molecular species and the equivalent widths of the DIBs reveal both similarities and differences in relative abundances, compared to trends seen in the ISM of our Galaxy and the Magellanic Clouds. Of the ten relatively strong DIBs considered here, six (including $lambda$5780.5) have strengths within $pm$20% of the mean values seen in the local Galactic ISM, for comparable N(K I); two are weaker by 20--45% and two (including $lambda$5797.1) are stronger by 25--40%. Weaker than expected DIBs [relative to N(K I), N(Na I), and E(B-V)] in some Galactic sight lines and toward several other extragalactic supernovae appear to be associated with strong CN absorption and/or significant molecular fractions. While the N(CH)/N(K I) and N(CN)/N(CH) ratios seen toward SN 2014J are similar to those found in the local Galactic ISM, the combination of high N(CH$^+$)/N(CH) and high W(5797.1)/W(5780.5) ratios has not been seen elsewhere. The centroids of many of the M82 DIBs are shifted, relative to the envelope of the K I profile -- likely due to component-to-component variations in W(DIB)/N(K I) that may reflect the molecular content of the individual components. We compare estimates for the host galaxy reddening E(B-V) and visual extinction A$_{rm V}$ derived from the various interstellar species with the values estimated from optical and near-IR photometry of SN 2014J.
214 - A.J. Porras 2013
Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio ), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.
Recent submillimeter and far-infrared wavelength observations of absorption in the rotational ground-state lines of various simple molecules against distant Galactic continuum sources have opened the possibility of studying the chemistry of diffuse m olecular clouds throughout the Milky Way. In order to calculate abundances, the column densities of molecular and atomic hydrogen, HI, must be known. We aim at determining the atomic hydrogen column densities for diffuse clouds located on the sight lines toward a sample of prominent high-mass star-forming regions that were intensely studied with the HIFI instrument onboard Herschel. Based on Jansky Very Large Array data, we employ the 21 cm HI absorption-line technique to construct profiles of the HI opacity versus radial velocity toward our target sources. These profiles are combined with lower resolution archival data of extended HI emission to calculate the HI column densities of the individual clouds along the sight lines. We employ Bayesian inference to estimate the uncertainties of the derived quantities. Our study delivers reliable estimates of the atomic hydrogen column density for a large number of diffuse molecular clouds at various Galactocentric distances. Together with column densities of molecular hydrogen derived from its surrogates observed with HIFI, the measurements can be used to characterize the clouds and investigate the dependence of their chemistry on the molecular fraction, for example.
The identification of the carriers of the diffuse interstellar bands (DIBs) remains to be established, with the exception of five bands attributed to C60+, although it is generally agreed that DIB carriers should be large carbon-based molecules (with ~10-100 atoms) in the gas phase, such as polycyclic aromatic hydrocarbons (PAHs), long carbon chains or fullerenes. More specific possible carriers among PAHs are investigated, namely elongated molecules, which could explain a correlation between the DIB wavelength and the apparent UV resilience of their carriers. We address the case of polyacenes, C4N+2-H2N+4, with N~10-18 fused rectilinear aligned hexagons. Polyacenes are attractive DIB carrier candidates because their high symmetry and large linear size allow them to form regular series of bands in the visible range with strengths larger than most other PAHs, as confirmed by recent laboratory results up to undecacene (C46H26). Those with very strong bands in the DIB spectral domain are just at the limit of stability against UV photodissociation. They are part of the prominent PAH family of interstellar carbon compounds, meaning that only ~10-5 of the total PAH abundance is enough to account for a medium-strength DIB. After summarizing the current knowledge about the properties of polyacenes and recent laboratory results, the likelihood that they might meet the criteria for being carriers of some DIBs is addressed by reviewing the following properties: wavelength and strength of their series of visible bands; interstellar stability and abundances, charge state and hydrogenation; and DIB rotation profiles. No definite inconsistency has been identified that precludes polyacenes from being the carriers of some DIBs with medium or weak strength, including the so-called C2 DIBs. But additional experimental data about long acenes and their visible bands are needed to make robust conclusions
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا