ترغب بنشر مسار تعليمي؟ اضغط هنا

Valuations and curvature measures on complex spaces

55   0   0.0 ( 0 )
 نشر من قبل Andreas Bernig
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Andreas Bernig




اسأل ChatGPT حول البحث

We survey recent results in hermitian integral geometry, i.e. integral geometry on complex vector spaces and complex space forms. We study valuations and curvature measures on complex space forms and describe how the global and local kinematic formulas on such spaces were recently obtained. While the local and global kinematic formulas in the Euclidean case are formally identical, the local formulas in the hermitian case contain strictly more information than the global ones. Even if one is only interested in the flat hermitian case, i.e. $mathbb C^n$, it is necessary to study the family of all complex space forms, indexed by the holomorphic curvature $4lambda$, and the dependence of the formulas on the parameter $lambda$. We will also describe Wannerers recent proof of local additive kinematic formulas for unitarily invariant area measures.



قيم البحث

اقرأ أيضاً

In this paper, we introduce a new notion for lower bounds of Ricci curvature on Alexandrov spaces, and extend Cheeger-Gromoll splitting theorem and Chengs maximal diameter theorem to Alexandrov spaces under this Ricci curvature condition.
192 - Martin Herrmann 2014
We give new counterexamples to a question of Karsten Grove, whether there are only finitely many rational homotopy types among simply connected manifolds satisfying the assumptions of Gromovs Betti number theorem. Our counterexamples are homogeneous Riemannian manifolds, in contrast to previous ones. They consist of two families in dimensions 13 and 22. Both families are nonnegatively curved with an additional upper curvature bound and differ already by the ring structure of their cohomology rings with complex coefficients. The 22-dimensional examples also admit almost nonnegative curvature operator with respect to homogeneous metrics.
358 - Ben Andrews , Yitao Lei , Yong Wei 2021
In the first part of this paper, we develop the theory of anisotropic curvature measures for convex bodies in the Euclidean space. It is proved that any convex body whose boundary anisotropic curvature measure equals a linear combination of other low er order anisotropic curvature measures with nonnegative coefficients is a scaled Wulff shape. This generalizes the classical results by Schneider [Comment. Math. Helv. textbf{54} (1979), 42--60] and by Kohlmann [Arch. Math. (Basel) textbf{70} (1998), 250--256] to the anisotropic setting. The main ingredients in the proof are the generalized anisotropic Minkowski formulas and an inequality of Heintze--Karcher type for convex bodies. In the second part, we consider the volume preserving flow of smooth closed convex hypersurfaces in the Euclidean space with speed given by a positive power $alpha $ of the $k$th anisotropic mean curvature plus a global term chosen to preserve the enclosed volume of the evolving hypersurfaces. We prove that if the initial hypersurface is strictly convex, then the solution of the flow exists for all time and converges to the Wulff shape in the Hausdorff sense. The characterization theorem for Wulff shapes via the anisotropic curvature measures will be used crucially in the proof of the convergence result. Moreover, in the cases $k=1$, $n$ or $alphageq k$, we can further improve the Hausdorff convergence to the smooth and exponential convergence.
In this paper, we study polar foliations on simply connected symmetric spaces with non-negative curvature. We will prove that all such foliations are isoparametric as defined by Heintze, Liu and Olmos. We will also prove a splitting theorem which red uces the study of such foliations to polar foliations in compact simply connected symmetric spaces. Moreover, we will show that solutions to mean curvature flow of regular leaves in such foliations are always ancient solutions. This generalizes part of the results of Liu and Terng for the mean curvature flow of isoparametric submanifolds in spheres.
Recently, in [49], a new definition for lower Ricci curvature bounds on Alexandrov spaces was introduced by the authors. In this article, we extend our research to summarize the geometric and analytic results under this Ricci condition. In particular , two new results, the rigidity result of Bishop-Gromov volume comparison and Lipschitz continuity of heat kernel, are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا