ﻻ يوجد ملخص باللغة العربية
Recently, in [49], a new definition for lower Ricci curvature bounds on Alexandrov spaces was introduced by the authors. In this article, we extend our research to summarize the geometric and analytic results under this Ricci condition. In particular, two new results, the rigidity result of Bishop-Gromov volume comparison and Lipschitz continuity of heat kernel, are obtained.
In this paper, we introduce a new notion for lower bounds of Ricci curvature on Alexandrov spaces, and extend Cheeger-Gromoll splitting theorem and Chengs maximal diameter theorem to Alexandrov spaces under this Ricci curvature condition.
We study closed three-dimensional Alexandrov spaces with a lower Ricci curvature bound in the $mathsf{CD}^*(K,N)$ sense, focusing our attention on those with positive or nonnegative Ricci curvature. First, we show that a closed three-dimensional $mat
In this paper, we establish a Bochner type formula on Alexandrov spaces with Ricci curvature bounded below. Yaus gradient estimate for harmonic functions is also obtained on Alexandrov spaces.
We prove the generalized Margulis lemma with a uniform index bound on an Alexandrov $n$-space $X$ with curvature bounded below, i.e., small loops at $pin X$ generate a subgroup of the fundamental group of unit ball $B_1(p)$ that contains a nilpotent
We relate the existence of many infinite geodesics on Alexandrov spaces to a statement about the average growth of volumes of balls. We deduce that the geodesic flow exists and preserves the Liouville measure in several important cases. The developed