ﻻ يوجد ملخص باللغة العربية
In the first part of this paper, we develop the theory of anisotropic curvature measures for convex bodies in the Euclidean space. It is proved that any convex body whose boundary anisotropic curvature measure equals a linear combination of other lower order anisotropic curvature measures with nonnegative coefficients is a scaled Wulff shape. This generalizes the classical results by Schneider [Comment. Math. Helv. textbf{54} (1979), 42--60] and by Kohlmann [Arch. Math. (Basel) textbf{70} (1998), 250--256] to the anisotropic setting. The main ingredients in the proof are the generalized anisotropic Minkowski formulas and an inequality of Heintze--Karcher type for convex bodies. In the second part, we consider the volume preserving flow of smooth closed convex hypersurfaces in the Euclidean space with speed given by a positive power $alpha $ of the $k$th anisotropic mean curvature plus a global term chosen to preserve the enclosed volume of the evolving hypersurfaces. We prove that if the initial hypersurface is strictly convex, then the solution of the flow exists for all time and converges to the Wulff shape in the Hausdorff sense. The characterization theorem for Wulff shapes via the anisotropic curvature measures will be used crucially in the proof of the convergence result. Moreover, in the cases $k=1$, $n$ or $alphageq k$, we can further improve the Hausdorff convergence to the smooth and exponential convergence.
We consider the flow of closed convex hypersurfaces in Euclidean space $mathbb{R}^{n+1}$ with speed given by a power of the $k$-th mean curvature $E_k$ plus a global term chosen to impose a constraint involving the enclosed volume $V_{n+1}$ and the m
We consider the quermassintegral preserving flow of closed emph{h-convex} hypersurfaces in hyperbolic space with the speed given by any positive power of a smooth symmetric, strictly increasing, and homogeneous of degree one function $f$ of the princ
In this paper we analyze the behavior of the distance function under Ricci flows whose scalar curvature is uniformly bounded. We will show that on small time-intervals the distance function is $frac12$-Holder continuous in a uniform sense. This impli
In this paper, we study flows of hypersurfaces in hyperbolic space, and apply them to prove geometric inequalities. In the first part of the paper, we consider volume preserving flows by a family of curvature functions including positive powers of $k
In this paper we prove convergence and compactness results for Ricci flows with bounded scalar curvature and entropy. More specifically, we show that Ricci flows with bounded scalar curvature converge smoothly away from a singular set of codimension