ﻻ يوجد ملخص باللغة العربية
A giant thermal magnetoresistance is predicted for the electromagnetic transport of heat in magneto-optical plasmonic structures. In chains of InSb-Ag nanoparticles at room temperature, we found that the resistance can be increased by almost a factor of 2 with magnetic fields of 2 T. We show that this important change results from the strong spectral dependence of localized surface waves on the magnitude of the magnetic field.
Vacuum fluctuations are a fundamental feature of quantized fields. It is usually assumed that observations connected to vacuum fluctuations require a system well isolated from other influences. In this work, we demonstrate that effects of the quantum
The field of plasmonic nanobubbles, referring to bubbles generated around nanoparticles due to plasmonic heating, is growing rapidly in recent years. Theoretical, simulation and experimental studies have been reported to reveal the fundamental physic
Recent results have shown unprecedented control over separation distances between two metallic elements hundreds of nanometers in size, underlying the effects of free-electron nonlocal response also at mid-infrared wavelengths. Most of metallic syste
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here we introduce the reflection from structural boundaries as a new degree of free
The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons - the most elementary states of light - can be generated on-demand in atomic and solid state emitters. Two-photon st